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Abstract
Purpose Whole-body MRI is seeing increasing use in the
study and diagnosis of disease progression. In this, a central
task is the visual assessment of the progressive changes that
occur between two whole-body MRI datasets, taken at base-
line and follow-up. Current radiological workflow for this
consists in manual search of each organ of interest on both
scans, usually on multiple data channels, for further visual
comparison. Large size of datasets, significant posture differ-
ences, and changes in patient anatomy turn manual match-
ing in an extremely labor-intensive task that requires from
radiologists high concentration for long period of time. This
strongly limits the productivity and increases risk of under-
diagnosis.
Materials and methods We present a novel approach to
the comparative visual analysis of whole-body MRI follow-
up data. Our method is based on interactive derivation of
locally rigid transforms from a pre-computed whole-body
deformable registration. Using this approach, baseline and
follow-up slices can be interactively matched with a single
mouse click in the anatomical region of interest. In addition to
the synchronized side-by-side baseline and matched follow-
up slices, we have integrated four techniques to further
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facilitate the visual comparison of the two datasets: the
“deformation sphere”, the color fusion view, the magic lens,
and a set of uncertainty iso-contours around the current
region of interest.
Results We have applied our method to the study of can-
cerous bone lesions over time in patients with Kahler’s dis-
ease. During these studies, the radiologist carefully visually
examines a large number of anatomical sites for changes. Our
interactive locally rigid matching approach was found help-
ful in localization of cancerous lesions and visual assessment
of changes between different scans. Furthermore, each of the
features integrated in our software was separately evaluated
by the experts.
Conclusion We demonstrated how our method significantly
facilitates examination of whole-body MR datasets in follow-
up studies by enabling the rapid interactive matching of
regions of interest and by the explicit visualization of change.

Keywords Whole-body imaging · MRI · Registration ·
Comparative visualization

Introduction

The rapid progress in MR scanning technology increasingly
enables imaging the whole body, and clinical applications of
whole-body MRI are rapidly emerging [1–3]. For instance,
vascular imaging protocols have been developed that enable
a vascular checkup and risk assessment for cardiovascular
disease [4,5]. These do enable imaging not only the entire
vascular system (including carotids, aorta, renal arteries, and
leg vasculature) [6], but also the amount of body fat and its
distribution over the body [7,8]. The presence of excessive
fat in the abdomen is an important risk factor for the onset
of vascular diseases, and in combination with the vascula-
ture diagnostic data, whole-body MR may provide a good
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assessment of the status and risk factors for a patient. Also
for oncological applications, diffusion-weighted and Short TI
Inversion Recovery (STIR) whole-body MR protocols have
been developed for the detection of cancerous lesions [3,9–
11] and for cancer staging based on, for instance, bone mar-
row involvement in hematological cancers. These protocols
have been shown to enable evaluation of treatment effect,
shortly after the onset of chemotherapy regimen or radio-
therapy.

The introduction of these new whole-body MR imaging
techniques provides important clinical benefits. However,
there are several technical challenges inherent to whole-body
imaging that so far have only been sparsely addressed due
to the relative novelty of whole-body MR acquisition. In
particular, comparative visual analysis of whole-body MR
follow-up data is difficult. Although the number of meth-
ods available for medical image visualization is constantly
increasing and even whole-body explorative visualization is
becoming a reality [12], only very few groups have addressed
the problems inherent to comparative whole-body scanning:
the inevitable differences in patient posture between follow-
up scans, in combination with the massive amount of data.
This, in particular, is a problem in radiological evaluation of
metastatic cancers, where metastases can appear throughout
the body. For instance, breast cancer, prostate cancer, and
Kahler’s disease tend to metastasize to bone tissue, where
lesions can occur in each individual bone. Such patients may
undergo periodic evaluation using whole-body MRI. In read-
ing, comparing and reporting these scans, the radiologist
has to answer three main questions: 1) Are there any new
lesions compared to the previous scan in any of the bones
of the whole skeleton?, 2) How did previous lesions evolve
over time as a result of disease progression or treatment?,
and 3) Is there risk of bone fracture due to progressive bone
loss?

To answer these questions, the radiologist has to per-
form a side-by-side comparison of each individual bone
from head to toe, for two (or more) follow-up scans. This
is a cumbersome process, because the posture of the patient
usually is different between the scans. This greatly compli-
cates localizing corresponding locations with respect to bone
anatomy. In addition to comparing both T1-weighted (T1W)
MR images for anatomical detail, other MR sequences, e.g.,
STIR images that provide better definition of the cancerous
lesions [9], often have to be investigated. As a result, the
reporting process of a follow-up whole-body scan may easi-
ly take the radiologist 1 h, since it is particularly important
to make sure that no lesions are missed due to the detri-
mental consequences for patient prognosis and quality of
life. As such, there is a great demand for more automated
visual analysis methods that aid in identifying the identical
anatomical location and slice view in follow-up whole-body
MR scans.

In this work, we present several methods to facilitate the
visual analysis of whole-body MR data for evaluation of
oncological follow-up studies. Our contributions are three-
fold:

• We present a novel comparative visualization approach
based on interactive derivation of locally rigid transforms
in a region of interest from a pre-computed whole-body
deformable registration. These are subsequently applied
to the coordinated visualization of baseline, follow-up,
and fused whole-body slices. As bones are inherently
rigid, these transforms form a good basis for compen-
sating for posture differences by matching follow-up to
baseline by simply selecting one bone at a time. Using this
locally rigid transform approach, baseline and follow-up
anatomical regions can be interactively matched, based
on a single click of the mouse in the anatomical region
of interest; see Fig. 1 for an illustration.

• Besides visualizing the synchronized side-by-side base-
line and matched follow-up slices, we present four ways
to facilitate a details-on-demand-based visual compari-
son of the two datasets: 1) The deformation sphere [13] is
a spherical cloud of points that follows the mouse cursor,
with each of the points being warped by the local defor-
mation field. The sphere assists comprehension of the
actual local deformation field. 2) The color fusion view
combines the baseline and follow-up in one view by mak-
ing use of two (perceptually motivated) color channels.
3) We render a set of uncertainty iso-contours around the
current region of interest [14], explicitly visualizing the
approximation error of the locally rigid transform. 4) We
have integrated a magic lens [15] that displays an alter-
nate MR modality so that areas of change can be further
studied.

• Finally, we investigate the role and utility of our meth-
ods toward improving the radiologists’ workflow in the
assessment of tumor burden in patients suffering from
Kahler’s disease by means of a case study with two expe-
rienced skeletal radiologists.

In this paper, we focus on the analysis of oncological
follow-up whole-body MR data. However, the presented
methods can be used for other applications as well, given
a dense non-rigid registration between two follow-up time
points.

Related work

The work presented in this paper focuses on enabling the
efficient comparative visualization of two whole-body MRI
datasets, being mostly baseline and follow-up datasets of
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Fig. 1 A slice view showing a follow-up whole-body MRI study of
a single patient. The baseline scan is shown on the left, the follow-up
on the right. The center view provides an orange–blue fusion of base-
line and follow-up. The right upper leg, indicated by the surrounding
area converted to grayscale for visualization purpose, is the region of

interest. A single click there has segmented part of the bone, result-
ing in a rigid transform that maps the follow-up to the baseline in this
region. Note that even though the rest of the body is aligned differently,
the local correspondence is well maintained, allowing for a coordinated
comparison within a region of interest

the same patient. Our technique involves image registration,
interactive segmentation, and comparative visualization. In
this section, we briefly survey related work on image regis-
tration, whereas we go into more depth summarizing com-
parative visualization, as that is where the contributions of
this work lie.

Image registration refers to the process of transform-
ing different images into one coordinate system, often for
the purpose of comparison. More specifically, image reg-
istration refers to the derivation of a transformation that
maps a moving image onto a fixed image, so that pixels
from the two images can be directly compared. A num-
ber of excellent surveys have been written on the topic
[16–18]. In this work, we make use of an efficient imple-
mentation of non-rigid registration with mutual information
[19] and B-splines [20,21]. This specific registration
approach is used often in deformation-based morphome-
try [22], i.e., the study of biological shape changes in image
data.

Comparative visualization refers to the visual repre-
sentation of multiple data sources with the express pur-

pose of studying the similarities and differences in those
data sources [23]. Examples include side-by-side compar-
ison [23,24], coupled side-by-side views [25,26], image
superposition [27], and more refined methods such as that by
Schneider et al. [28], where they used contour trees for match-
ing and comparing different scalar fields in a flow dataset.
Recently, Rieder et al. [29] have developed a tumor visual-
ization tool that incorporates lesion segmentation and man-
ual local registration of two regions of interest. The work by
Kok et al. [30] is related to this, in that the skeletons were
extracted from small animal imaging datasets and registered,
taking into account joint articulation, allowing for the direct
comparative visualization of the sub-volumes containing the
various limbs.

Image superposition, for example, checkerboard or color
fusion displays, is quite popular in medical practice and
research [27]. The work in this paper combines a color fusion
display with a new type of interactive model-based compari-
son, where the user implicitly specifies the model by clicking
on a part of the anatomy that interests him/her. Based on this
expression of interest, the method calculates a transformation
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that is optimized for the comparison of the region around the
selected point. The method by Kok et al. [30] offered a top-
down approach to comparison, in which exploration of each
bone of interest requires fitting the entire skeleton atlas to
the data. Our method, on the contrary, allows exploration of
the complete body volume from its local parts. It thereby uti-
lizes interactively specified subsets of the skeleton, which is
more suitable to the radiological workflow than atlas-based
methods.

The contribution of this work is the interactive matching
of datasets according to user-specified regions, and especi-
ally the real-time derivation of this matching based on the
real-time segmentation and locally rigid approximation of a
global deformable registration. Furthermore, this is the first
application of comparative visualization to whole-body MRI
datasets.

Integrated exploration through locally rigid transforms

Locally rigid registration

In the design of our visual analysis, we aim to maximal-
ly leverage the conventional workflow of the radiologist in
reporting follow-up whole-body MR. This requires visual
side-by-side comparison of two volumes, the baseline and
the follow-up. For the coordinated display of the two vol-
umes, it is necessary to establish correspondence between
all voxels of the first dataset and those of the second one,
which is achieved by image registration. Due to inevitable
posture differences between the two scans and other possi-
ble differences, like weight gain or loss by the patient during
the time period between the scans, rigid alignment of the
complete volumes is impossible. Non-rigid registration, on
the other hand, is able to align the volumes with reasonable
quality. However, this often happens at the cost of producing
unnatural deformations of the rigid parts of the body, since
the global aim of deformable registration is to compensate
for differences between scans, including both posture and
anatomical changes. Whereas our main goal is to enable the
visual detection of cancerous lesions, while getting rid of
posture differences. Hence, for performing accurate compar-
ison of two regions of interest, they have to be aligned in
a locally rigid fashion. This is especially so in the case of
Kahler’s disease, where the radiologists are primarily inte-
rested in inspecting the bones where the disease metastasizes.
By restricting ourselves to rigid transformations, we get rid
of rigid bone posture differences while explicitly retaining
differences caused by changing lesions. Last but not least,
such rigid matching of the regions of interest is much bet-
ter accepted by radiologists, who find it more natural, hence
trustworthy, than the deformable one.

Thus, alignment of the baseline and the follow-up whole-
body volumes reduces to finding a way to establish rigid
correspondences between two local regions of interest, sub-
jected to the constraint that these correspondences should
be defined for every possible region of interest. This con-
straint is motivated by the observation that Kahler’s disease
can metastasize on every bone in the human body, from head
to toe. In practice, resolving even such a simplified problem
is difficult. Interactive alignment of the two regions is infea-
sible since it requires their segmentation in both the baseline
and the follow-up.

To overcome the mentioned difficulties, we have devel-
oped an interactive approach that estimates the local rigid
transformation from the pre-computed global deformation.
We utilize this transform to fully automatically align both
datasets in the area of interest, in real time. Our approach has
several important properties that make it suitable for side-
by-side comparison as performed in the conventional radio-
logical workflow:

• It is based on rigid image matching: no distortions are
introduced.

• It requires minimal user interaction: one mouse click is
sufficient for aligning the regions of interest.

• It does not require manual segmentation of the regions:
the latter is calculated automatically, starting from the
user-provided seed point (one mouse click). Subse-
quently, the corresponding region of the follow-up scan
is obtained from the pre-computed global deformation.

• It is fast: the more time-consuming operations are per-
formed at the pre-processing stage. Segmentation of the
structure of interest, estimation of the rigid transform
in the area, and re-alignment of the follow-up volume
are performed on-the-fly. Derivation of the locally rigid
transform from the global deformation field is done with
a closed-form relation, which will always be significantly
faster than any iterative on-the-fly locally rigid registra-
tion technique.

The following sections describe the efficient computation
of the localized transforms and our user interface prototype
that incorporates these into a radiological workflow.

Computing localized transforms

Figure 2 shows the steps required to compute this locally
rigid approximation of the deformation field surrounding a
given point of interest. First of all, the point of interest is
used as a seed point for a region growing algorithm, creat-
ing a coarse segmentation of the object of interest. Subse-
quently, the voxels belonging to the segmented object are
matched to the corresponding voxels in the follow-up image,
by using the pre-computed deformable registration. Once the
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Fig. 2 The processing pipeline for deducing a locally rigid transform,
given a point of interest. The links in this diagram represent the opera-
tions, while the boxes represent the resulting data. The pre-processing
operations are marked in orange

locations of all segmented voxels are known both in baseline
and follow-up coordinates, these point-pairs can be used as
landmarks to estimate the rigid part of their transformation.
Finally, the resulting rigid transform is applied to the follow-
up volume in order to align it with the baseline volume.
The following sections explain the steps of the algorithm in
more detail.

Area of interest segmentation

To generate the vectors that are used to approximate the rigid
transform, we need a set of points that are likely part of the
structure of interest. We do not necessarily need to accura-
tely segment the entire structure, as long as a large majority
of the points are correctly segmented. Points that are falsely
identified as belonging to the structure (false positives) are
more of a problem than points that are falsely identified as
belonging to the background (false negatives). The former
will affect the rigid transform estimation more severely as
they belong to the image part where the rigid approximation
is less valid.

(a) Initial

(b) Propagation (c) Segmented part of the bone

Fig. 3 Region of interest segmentation by confidence connected region
growing. The initial condition around the seed point and the region
growing are shown on the left, while the resulting segmentation of a
part of a bone is seen on the right (white mask)

Region growing is widely used for the segmentation of
medical images, in particular, skeletal structures in MR data
[31,32]. Here, we have adopted a confidence connected
region growing method [33]. The advantage of this imple-
mentation is that it is fast and has few operational parame-
ters, with which it can be set to return more or fewer points
based on a confidence interval. The latter makes it an ideal
candidate for our task, as we can influence the ratio between
false positives and false negatives.

The segmentation process is illustrated in Fig. 3. The illus-
tration shows the two-dimensional case, but we employ a
three-dimensional version of the algorithm. Surrounding the
point of interest (indicated by the purple dot), a small spher-
ical region is created (the yellow dots), which is assumed
to be within the object of interest. Based on the mean and
variance of the points within this region, the initial selec-
tion is expanded incrementally with neighboring voxels that
fall into the same distribution with high probability [33]. For
execution of the algorithm, we have used the following para-
meter values: multiplier = 1, number of iterations = 1, initial
neighborhood radius = 2, and replace value = the maximum
intensity value in the data.

To constrain the computation to an anatomically rea-
sonable area of interest, we constrain the region growing
to an empirically selected 10 cm × 10 cm × 10 cm box
around the point of interest. This prevents the algorithm from
taking up valuable processor time in the rare cases where
it accidentally over-segments and floods into neighboring
regions.
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Fig. 4 Deformation field of baseline (orange) and corresponding
follow-up (blue) positions, during the rigid transform extraction
process. From left to right: original field, field after removing trans-
lation, field after removing both translation and rotation. The bottom
row shows the transforms that have been applied to the point sets as
rectangles in the corresponding colors

Baseline and follow-up point matching

To perform the rigid transform estimation step, all voxels that
are inside the selection need to be mapped to voxels in the
follow-up image. The dense deformation field generated by
the deformable registration step during pre-processing pro-
vides such a mapping. By sampling the deformation field for
all voxels included in the area of interest, we extract pairs
of baseline and corresponding follow-up coordinates. As the
transformation of the anatomical object of interest is cap-
tured in this set of point-pairs, they form the basis for the
transform estimation in the following step.

Rigid estimation by landmark transform

The landmark transform is often used to calculate the rotation
component of absolute orientation [34]. The method uses
unit quaternions to find a non-iterative closed-form solution,
which makes it accurate and highly efficient.

As shown in Fig. 4, the set of point-pairs can be decom-
posed into a rigid transform part and a non-rigid part. Starting
with the base situation, on the left, where no transform has
been applied to either dataset, we note from the length of
the black lines that the discrepancy between the two fields
seems rather large and fairly structured. After applying the
resulting transformation, the discrepancy between baseline
and follow-up points is now reduced to only the non-rigid
components, shifting the visual focus to the actual deforma-
tions.

Note also how between the left and middle figure, the
apparent center of the rotation, indicated by red arrows in
Fig. 4, is displaced, even though only a small translation
has been applied. This visual deception illustrates that the
removal of the rigid transform component is a key element
in the visual assessment of deformations.

Application of found rigid transform

Once the transform has been found, it is applied to the follow-
up volume. The volumes are only sampled when slices have
to be generated for viewing, keeping into account their rela-
tive orientations.

User interface

To test how our methods fit within a radiological workflow,
we have made a prototype implementation that encompasses
the entire visual examination workflow. The user interface
of the application is split into three main parts. To closely
mimic the normal radiological workflow, the main compo-
nents are three side-by-side slice views.

For consistency, the views are structured in a fixed way so
that the baseline image is always on the left, and the follow-
up is always on the far right. The middle view shows a fusion
of both images, to further ease the comparison (see “Color
fusion view”).

Each view shows a two-dimensional slice through the
three-dimensional volume. By right-dragging, the user can
move in the image plane, while center-dragging is used to
navigate in the slice direction. The mouse wheel is used
for zooming, as to enlarge details. Moving in one view will
always keep the other views synchronized to show the exact
same spatial area. Navigation of these slice views is always
linked between all three views.

Once a point of interest is found in one of the images, a
mouse click suffices to align the follow-up image to the base-
line, using the locally rigid transform estimation surrounding
the clicked point.

The slice views can optionally show a number of overlay
components. These overlays will be explained in more detail
in the following sections. To make the user interface as lean
as possible during normal diagnostic procedures, the overlay
elements can be toggled on and off by a set of checkboxes
at the bottom of the screen, or by pressing the associated
number keys.

STIR viewing

The data we have are inherently multi-modal, consisting of
both T1W and STIR volumes. The T1W volumes are the
default modality, as they provide the anatomical context. The
STIR data are used for detailed examinations. To avoid clut-
tering the interface with many separate slice views, the STIR
images are shown only in a details-on-demand fashion (see
Fig. 5). To optimally profit from the co-localization of the
two scans, we have chosen to use a magic lens to display
the STIR images as an overlay [15]. The circular lens that
follows the mouse cursor can be quickly toggled on and off.
The position of the lens is synchronized through all three
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Fig. 5 Slice view of the data, with the STIR lens overlay enabled.
From left to right: baseline, color fusion of baseline and follow-up, and
follow-up. The white circular lens, which follows the cursor, shows a
secondary MRI modality, providing better definition of the cancerous

lesions. The image shown inside is co-located with the surrounding
data, which as such functions as an anatomical reference. The STIR
lens also participates in the color fusion, so that changes in intensity in
the secondary data are easily visualized

views, easing comparison of STIR values between baseline
and follow-up.

Color fusion view

As previously mentioned, the radiologists are trained to work
with grayscale slice views and construct a mental image of
the anatomy of the patient from that. However, small changes
in size and intensity are difficult to pick up using only a side-
by-side view. This is why the central slice view shows a color-
fused image of both follow-up and baseline. The colors we
have chosen are orange and light blue, for two reasons. First
of all, they are exactly complementary, so areas where the two
intensities are similar become gray, leaving the areas where
differences are present colored. Secondly, the colors can be
perceived even by viewers with color vision deficiency.

If intensities decrease locally, the color becomes orange,
while an increase yields a blue color; see Fig. 6. Small mis-
alignments are easily spotted by the blue border on one side
and the orange border on the other.

Deformation sphere

To inspect the 3D deformation field and also assess how well
the locally rigid approximation matches the deformable reg-
istration, we introduce a visual feedback component in the
shape of a 3D sphere, as shown in Fig. 7. The sphere is shown
both in the baseline as well as in the follow-up coordinate
system. The sphere is a unit sphere in the baseline coordi-
nate system, but due to the non-rigid registration, its shape
in the follow-up coordinate system is deformed (by the non-
rigid deformation field). By moving the sphere around, subtle

changes in the deformation field can be picked up by moni-
toring the shape of the deformed sphere.

In the central fused view, a combined visualization is used
to emphasize the difference vectors between the two spheres.
Color-coded lines are drawn between each pair of points. The
longer the lines, the larger the difference between the baseline
and follow-up coordinates, and the less accurate is the locally
rigid approximation.

Uncertainty contours overlay

Since the rigid transform is generated with the selected object
in mind, the quality of the approximation will slowly dimin-
ish as the distance to the object gets larger. For rigid struc-
tures, such as bones, the approximation will be accurate
across greater distances than for deformable structures, such
as the internal organs. To indicate the accuracy of the rigid
estimation, we propose a radially generated boundary around
the point of interest, which indicates the absolute difference
between the deformable transform and its rigid approxima-
tion.

We introduce three lines, functioning as nested contours,
that each correspond to a pre-set allowable error, as seen
in Fig. 8. In the examples shown, the errors are 3, 6 and
9 mm from inner to outer. These contours are kept as a radial
structure, so that it is immediately clear what the uncertainty
around the point of interest is. In our software, these contours
are centered around the mouse position, allowing interactive
exploration of the current transform, but they can also be
statically linked to the pre-selected point of interest. Note that
the error contours stretch further along the bony structures,
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Fig. 6 Color fusion of the baseline scan and three consecutive follow-
up scans of two different patients (shown in different rows). For each
patient, the data are displayed with either locally rigid alignment of the
right femur (first three columns), or the left femur (last three columns);
the area surrounding the region of interest is converted to grayscale for
visualization purpose. Such color fusion view greatly simplifies visual
assessment of changes between the baseline and the follow-up scans.

For the first patient (top row), the orange color is dominating in the
area around the lesions, indicating progression of the disease. For the
second patient (bottom row), predominantly blue color is observed in
the lesions area, with strongly increasing intensity of the blue channel
between the first and the last baseline/follow-up pair of images. Such
behavior indicates successful recovery of the patient

indicating the matching is accurate as is to be expected along
such a rigid structure.

Implementation and performance

Whole-body MR datasets can be quite large and therefore
processing these can become a computational burden when
multiple scans have to be compared. A whole-body scan with
an isotropic voxel size of 1 mm can easily reach a size of
512 × 350 × 1,800 voxels, resulting in a 16-bit data volume
of over 600 megabytes.

The prototype application is implemented in C++, using
the Insight Toolkit for segmentation and volume handl-
ing [33]. All drawing routines, such as slice rendering and
overlays, use the OpenGL API, to ensure portability across
platforms.

The patients1 for our study are scanned coronally at a
1 mm ×1 mm in-plane resolution, with 5 mm between slices

1 For retrospective anonymized studies from routine patient care in
Dutch University Medical Centers, institutional review board approval
is not required.

to reduce the total scan-time; for more details on scanning
parameters, we refer reader to [35]. During pre-processing,
the volumes are resampled to an isotropic resolution of
1.5 mm × 1.5 mm × 1.5 mm due to memory limitations on
the PC on which the prototype was implemented and tested.

Pre-processing

The pre-processing routine consists of two major steps.
Firstly, the data of each scan are intensity inhomogeneity
corrected and stitched into a complete volume. Secondly, the
generated volumes are registered pairwise, each follow-up
onto its corresponding baseline.

Stitching and inhomogeneity correction

Whole-body MRI scans are usually made in multiple acqui-
sition stages [1]. Since the field of view that can be imaged
by the scanner is limited, the patient has to be repositioned.
Much like panoramic photography, several slightly overlap-
ping acquisitions are joined together into one large volume to
extend the field of view. The patient is placed in the scanner
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Fig. 7 A set of deformation vectors for a sphere. The orange points
correspond to the baseline (a sphere) while the blue points correspond
to the sphere warped deformably to the follow-up coordinates. The
longer the lines, the more distortion has occurred. On the left, a purely
deformable registration, while on the right, a locally rigid transform
has been estimated, which has been subsequently applied. As a result,
the deformation vectors on the right only show the deformations that
are not explained by the rigid transform. The top row shows only the
sphere, while the bottom row shows it in the context of the application

on a movable table, which can move automatically after each
acquisition. In the data used in this work, the patients were
typically scanned in six stages, with a 5 cm overlap between
succeeding volumes.

Using the spatial coordinates that are embedded by the
MRI scanner, the volume of each acquisition stage is posi-
tioned into the patient-space. Once all transforms are known,
a resampling operation is performed to create the whole-body
volume.

Due to field inhomogeneity, the signal intensity can vary
gradually within an acquisition. These intensity changes are
mostly visible at the boundaries of the field of view of the
scan. We construct a smooth approximation of the bias field
and subsequently use it to suppress these intensity varia-
tions. For calculating the bias field, we have developed an
inhomogeneity correction algorithm [35] based on the fuzzy-
c-means clustering [36]. The bias field correction in our
algorithm is performed jointly on the T1W and STIR image
stacks, and the intensity in the overlap areas is used to con-

Fig. 8 Uncertainty contours showing the accuracy of the rigid approx-
imation, a section of the upper left leg. Each contour delineates a fixed
error margin, from inner to outer, respectively, of 3, 6, and 9 mm

strain the optimization. Such bias correction is rather con-
servative as it does not suppress intensity changes that are
induced by the lesions. In addition to the estimated bias field,
this algorithm also returns the probability maps for each of
the main tissue classes. Finally, intensity of all scans is stan-
dardized by mapping it onto the same range of grayscale
values.

Registration

The deformable registration is implemented using elas-
tix [37]. Using this software library, we have constructed
a multi-level registration approach. Initially, the coarse align-
ment is estimated using an affine transform. After this initial
registration, an elastic registration takes place. This elastic
registration makes use of a multi-resolution process (3 res-
olutions), in which a deformable B-spline grid is incremen-
tally refined. In the last pass, the finest level, the B-spline
grid has a spacing of 12 mm. As a similarity metric to be
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optimized by the registration, we have chosen to use a Mattes
mutual information [19] (32 histogram bins), although other
metrics may also be suitable for this purpose. A stochastic
gradient descent optimizer [38] was selected, using 1,000
iterations.

The anatomical T1W scans are used for the registration,
as they provide the most amount of detail. Additional MRI
sequences, such as the STIR volumes, are typically acquired
interleaved with T1W and are therefore already in alignment
with the anatomical data.

After performing the registration, the average mutual
information value on 32 whole-body volume pairs has
increased from 0.32 ± 0.12 to 0.90 ± 0.08, with average
increase of 0.56 ± 0.14 on a pair of registered volumes.

Timing and performance

We have profiled the prototype application on an HP Z400
workstation, with a quad core Intel Xeon W3530 processor
at 2.8 GHz and 6 gigabytes of RAM, and an Nvidia Quadro
FX1800 videocard.

The intensity inhomogeneity correction and stitching
together take from 10 to 15 min depending on the total image
size, and registration takes less than 5 min, which is fast
enough for our purpose, especially considering the MRI scan
takes almost an hour to acquire. The registration is sped up
considerably by selecting a stochastic gradient descent opti-
mizer [38], thereby only having to evaluate a small number
of points during the incremental optimization.

At startup, the application needs around half a minute
to load the data files for the selected patient to memory.
This includes two T1W volumes, two STIR volumes, and
the deformation field.

All operations that are part of the interactive workflow
(indicated by the green border in Fig. 2) are executed in less
than 0.2 s. Updates during scrolling and mouse motion, such
as the deformation sphere updates, take less than 10 ms and
therefore run at the full framerate of the display device. Refer
to Table 1 for more detailed timings. At all times, an interac-
tive framerate is maintained.

During use, memory usage peaks at around 2.6 gigabytes.
The memory usage of the application is largely dominated by
the size of the deformation field, which is stored in floating
point vector format, resulting in a storage cost of 12 bytes
per voxel. If necessary, this could be further reduced by
downsampling the deformation field, as it is usually quite
smooth.

Evaluation

To further validate the suitability of our prototype for the
intended task, we performed a case study evaluation accord-

Table 1 Performance figures for preprocessing and the various stages
of the pipeline (average of 48 datasets)

Operation Time

Preprocessing (bias correction and stitching) 10–15 min

Preprocessing (registration) <5 min

Sphere deformation 10 ms

Segmentation 100–200 ms

Slicing 100–200 ms

ing to the guidelines set out by Yin [39]. We wanted to inves-
tigate how well our intended application, being the study of
pathological changes in whole-body MRI, would be received
by its main intended user group: radiologists.

Case study

We formulated our main study question as: “How does the
interactive whole-body MRI comparative visualization tool
facilitate the study of bone tumor treatment or progression?”
Our secondary question is similar but more generally framed:
“How does the interactive whole-body MRI comparative
visualization tool facilitate visual comparison in morphomet-
rics?” As our case, we selected the application of our tool to
four sets of whole-body MRI volumes by two radiologists
experienced (together more than 40 years of experience as
radiologist) with oncological whole-body MRI in the clinical
workflow. Each set of the whole-body MRI volumes corre-
sponded to the same patient and consisted of a baseline scan
and multiple follow-up scans. In two different sessions, the
radiologists each examined two different pairs of whole-body
MRI. The radiologists were not involved in the development
of the method, and their first contact with the prototype was
during the case study, so their role as case study subject was
justified.

To answer the case study questions, we decomposed them
into a number of propositions that relate directly to the diffe-
rent components of our approach. During the case study, we
investigated each of the propositions in turn. In the text, we
refer to the users interchangeably as “radiologist”, “user”,
and “domain expert”.

Interactive locally rigid transforms enable the rapid
matching of slices from baseline and follow-up.

In the current clinical workflow, the radiologist scrolls
through the baseline dataset, finds something interesting, for
example, a tumor, then scrolls through the follow-up dataset
trying to find the matching slice. This is mostly not possi-
ble, as the main slice directions usually do not align due to
pose differences. The process is repeated a number of times,
and the radiologist tries to construct a mental model of the
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changes, for example, growth or shrinkage of the tumor. Our
approach for the matching of baseline and follow-up was
deemed accurate and fast.

The deformation sphere helps to clearly distinguish
between areas of rigid and non-rigid change.

One of the radiologists stated that the deformation sphere
certainly helped to understand the deformations between
baseline and follow-up, but that due to the usual time pressure
and the fact that our approach offered other comparative visu-
alization possibilities that she preferred, she would probably
not make use of the sphere in practice. The other radiologist
found the sphere not very intuitive, and thus, he considered
it as having little added value for clinical use.

The deformation sphere helps to gain insight into the
nature of localized non-rigid changes, more so than
standard side-by-side comparison for example.

Both radiologists stated that they preferred the
side-by-side and color fusion view over the sphere. They
found that the color fusion view represented the match in
an intuitive way and showed all differences in a single view,
whereas the sphere required more interaction from the user.
After more investigation, one of the radiologists stated that
the deformation sphere could, indeed, be useful to study for
example compression in the spine.

The confidence boundaries clearly show where the
rigid approximation is justified, and hence where the
visual differences can be trusted.

Although the users found the confidence boundaries to
make sense, the color fusion display, in combination with
their anatomical knowledge of the rigidity of the body
parts, already supplied sufficient information concerning
mismatches.

The presented system speeds up whole-body MRI com-
parison both through the rapid matching of slices and
through the subsequent explicit visual representation
of local changes (deformation sphere/color fusion).

Both domain experts agreed strongly with this proposi-
tion, stating that our method significantly sped up the locali-
zation of lesions, as well as the determination of their type.

The STIR magic lens aids lesion assessment, in that
lesion details can be better visualized with STIR, whilst
(detailed) context is shown by the T1W .

The radiologists found this functionality very useful.
Compared to the original workflow, where corresponding
slices have to be sought across four different volumes (T1W
baseline and follow-up, as well as STIR baseline and follow-

up), the ability to get a co-registered view of the STIR image
was considered a major time saver. Visual inspection to find
tumors is done by looking for lowered image intensity in
T1W and heightened image intensity in STIR, which can
now be easily verified by switching on and off the over-
lay lens. Using this method, the users were easily able to
find a number of bone lesions, that are otherwise quite hard
to pick up, in one of the patients. Also, the possibility to
use the T1W magic lens on the STIR image was found
useful.

The color fusion view facilitates visual comparison
between baseline and follow-up more than side-by-side
views, as changes are visually emphasized.

The color fusion view was much appreciated by the radiol-
ogists. In two cases, a diffuse infiltration of the bone marrow
was visible as a blue region in the color fusion view and
could be confirmed by the use of the STIR magic lens or by
switching to the STIR view. One of the experts commented
that she found the color fusion view, the deformation sphere,
and the confidence contours to enable a three-part quality
check of the data. Based on these, the distinction between
differences due to pathology and those due to registration
could be made.

Summary

Both radiologists were clearly positive about the interactive
whole-body MRI comparative visualization tool, agreeing
strongly with our proposition that it sped up the localization
and focused study of bone tumors. In this, the interactive
matching was deemed to be centrally important, and the side-
by-side and color fusion views to be most intuitive in studying
the changes between baseline and follow-up.

The deformation sphere was seen by one user as useful
in understanding the deformation and perhaps in studying,
for example, compression in the spine. However, both users
agreed that it would probably not find use in the clinical
workflow due to the extra interaction it required, and mainly
due to the fact that the other views sufficed for facilitating
comparison. This conclusion can possibly be explained by
the novelty of these concepts to both our users.

Based on this case study, we conclude that the tool facilita-
tes the study of bone tumor progression, and visual compari-
son in morphometrics, primarily through the rapid interactive
matching and the color fusion view.

Conclusions and future work

We have presented a novel method for comparative visual
analysis of whole-body MR datasets, focusing, in particular,
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on the local comparison of rigid structures. The proto-
type implementation is geared toward radiologists and uses
accepted concepts from their standard workflow, while com-
plementing it with the ability to perform coordinated visual
assessment of disease progression.

The main contribution of this work is the development
of the method that allows interactive alignment of follow-up
and baseline images in a locally rigid manner based on the
pre-computed global deformation. The mentioned properties
of our method, being fast and rigid, are critical for successful
assessment of tumor healing or progression.

We have also shown how our method is applied in a radi-
ological case study targeting the progression of bone lesions
in patients with Kahler’s disease. Although the evaluation of
the developed methodology was performed on a single type
of data, the developed methodology is very general and thus
can be applied for various comparative studies. Its usage, in
general, is not restricted to rigid structures: we expect that
this approach is also fully or partially applicable to visual-
ization of changes in, e.g., soft tissue. This, however, might
require deriving local transforms with more degrees of free-
dom than the currently used rigid transforms to better reflect
the physical properties of that particular tissue. In the future,
we are planning to set up an additional case study that would
allow quantification of several measures associated with our
method, in particular, the inspection time gain per dataset
provided by our method and the lesions detection rate. In
this study, the results obtained with our tool will be com-
pared with the ground truth in the form of clinical reports
available for each of the scans.

A limitation of our application is that it currently only han-
dles a single pair of datasets, while the underlying methods
can easily scale to multiple timepoints. If a registration of
each timepoint to the baseline scan is made, extending the
number of parallel views should be a straightforward and wel-
come addition. This would allow for the examination of an
anatomical structure of interest through an arbitrary number
of timepoints.

To further reduce the memory requirements, as would
be necessary when loading multiple timepoints, we pro-
pose to reduce the memory taken up by the deformation
field. Instead of fully storing the deformation field, we
could store only the B-spline control grid, vastly reduc-
ing memory usage. However, this would exclude the use of
other nonparametric registration methods such as optic flow
techniques.

The promising results in localizing and assessing chan-
ges in bone resorption encourage us to further evaluate the
applicability of our method in future clinical studies. For
example, the progression of tumor growth in the brain is
difficult to assess visually, and non-rigid registration intro-
duces unwanted deformations. Locally rigid transforms may
be able to overcome these problems.

In the future, we foresee the need to provide a form of
guided exploration, where visual cues help to perform a top-
down search for regions containing large intensity changes.
This would speed up the work of the radiologist, as it allows
him to skip over areas where no changes are detected. Also,
from a radiological perspective, there is a high demand to
further extend the measurement capabilities of the applica-
tion. A physical measurement of the volume of change would
help in tracking the progression.

This study demonstrates the need for visual analysis me-
thods for whole-body MR. Enabling posture-independent
visualization in whole-body MR is a key step toward
more effective total body oncological evaluation in clinical
practice.
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