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Abstract—Current medical research is often hypothesis driven, focusing on a limited number of parameters showing, or expected to
show, some relation with the disease. When a supporting scientific ground or proper hypothesis is lacking however, this approach
is not always fruitful. Visual analytics has seen limited application in medical research. We propose that visual analytics can be
used to study parameters across patients, especially in cases where no clear hypothesis is available from the start. This can help
medical researchers to focus their efforts. We present a visual analysis framework which provides highly interactive visual analysis
of cohort data, and is able to deal with irregular multi-timepoint, imaging and non-imaging data. The framework integrates the
extraction of features into the process of visual analysis and makes use of a carefully designed data structure able to keep track of
data dependencies and interrelationships in inhomogeneous cohort study data. We evaluated the framework on a cohort of patients
suspected of having neuropsychiatric SLE, a heterogeneous rheumatic disease. Visual analysis revealed a number of observations
corroborating earlier findings. We were also able to identify new trends in the data that could indicate directions for further research,
and illustrated thereby the potential of visual analytics to operate as a hypothesis generating tool.
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1 INTRODUCTION

Current medical research is often hypothesis driven, focusing on a lim-
ited number of parameters showing, or expected to show, some relation
with the disease. In current medical research it is common to analyze
only a few measurements at the same time. When a supporting sci-
entific ground or proper hypothesis is lacking however, this approach
is not always fruitful. Visual analytics has shown to be of use in the
analysis of large multi-parameter and multi-timepoint datasets, such as
meteorological models. Visual analytics has seen limited application
in medical research, primarily for studying inter-patient phenomena.
From this research, it appears that visual analytics can be used as a
hypothesis generating tool.

We propose that visual analytics can also be used to study parame-
ters across patients. This might be particularly useful in cases where
no clear hypothesis is available from the start. This could help medical
researchers to focus on the proper parameters. In this paper, we pro-
pose a visual analytics framework and associated data structure that
helps the user to extract parameters of interest, visualize parameters
of interest, provides direct feedback and allows for easy exploration
of multi-modal and multi-timepoint parameters across patients. The
contributions of this work can be summarized as:

• Integration of a full medical cohort analysis work flow in a
reusable and extensible implementation framework;

• Highly interactive visual and basic statistical analysis of cohort
data, dealing with irregular multi-timepoint, mixed imaging and
non-imaging, and missing data;

• Integration of online distributed feature computation in the visual
analysis process;

• Design of a data structure and corresponding relational database
layout, that enable keeping track of the data dependencies and
interrelationships in inhomogeneous cohort study data, and easy
extensibility in terms of patients and data types.
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We have implemented the framework documented in this paper in a
software system called PAPILIO, which consists of a preprocessing en-
vironment called PREPAP and a visual exploration environment called
VISPAP. We evaluated the usability of visual analytics in the analysis
of heterogeneous cohort datasets by applying PAPILIO on a cohort of
patients suspected of the heterogeneous rheumatic disease neuropsy-
chiatric systemic erythematosus (NPSLE). The framework is however
applicable and scalable to other diseases and might be of use in the
analysis of population-based studies and electronic health records.

The paper is structured as follows: related work is discussed in Sec-
tion 2 and in Section 3 we describe our approach in detail. Section 4
addresses the details of our implementation and in Section 5 we eval-
uate the our work by performing an informal case study. Finally, we
present conclusions and future work in Section 6.

2 RELATED WORK

Related work concerning visual exploration in medical datasets can be
divided in two varieties: the study of medical data originating from
a single patient and the study of medical data originating from mul-
tiple patients. This section is concerned with interactive visualization
techniques that facilitate the finding of meaningful patterns in both
varieties.

Visual data analysis combining multi-dimensional single patient
medical data with real-time linked scatter plots and parallel coordi-
nates representations was first investigated in the WEAVE system of
Gresh et al. [14]. A number of aspects with regards to the specifi-
cation of this kind of focus+context visualization were formalized by
Doleisch et al. [8]. In 2007, Blaas et al. adopted this approach and
added feature derivation possibilities, pattern recognition techniques
and interactive multi-dimensional segmentation strategies [5]. So far,
the approach was solely applied on single timepoint data. Oeltze et
al. extended the application domain however to dynamic 3D perfu-
sion data by deriving parameters from the time intensity curves in the
dataset [18]. Fang et al. used another approach of computing similar-
ities between spatial measures and time intensity curves to visualize
dynamic 3D medical data [13]. Keefe et al. used small multiples to
visualize biomechanical motion data [17]. In all these cases, the fo-
cus was on studying the behavior of medical data in a single patient or
subject.

Research on interactive visual exploration of multi-patient datasets
is scarce, usually focuses on the analysis of events or scalar data over
time and is commonly found in the application of analyzing electronic



health records (EHRs). Lifelines [19] present personal history record
data organized in expandable facets, but does provide – aside from
panning, semantic zooming and text filters – very few ways to ma-
nipulate the data. PatternFinder [12] presents a form-based query in-
terface for specifying temporal queries over patient histories. These
forms give the use extensive control in filtering, but they are also very
complex to specify. In 2008, Wang et al. presented the alignment,
rank and filter (ARF) framework which firstly enables the user to in-
teractively align time-oriented data across patients [24]. This approach
was later extended with categorical searching, aggregation and group
comparison [25]. In all these cases, imaging data was however not
considered.

A conceptual framework integrating the visual analysis of multi-
modal and multi-timepoint data across patients was presented by Blaas
in 2010 [4]. Departing from the concept of multi-field data, Blaas de-
fined a framework of domains, features and mappers which allowed vi-
sual exploration of image data across multiple medical imaging modal-
ities at the same time, with a link between views on patient, group
and voxel level. From the evaluation on a dataset consisting of pa-
tients with multiple sclerosis, it appeared that the conceptual frame-
work could be used as hypothesis generating framework. Due to its
promising results, we adopted Blaas’ conceptual framework as a start-
ing point for our work.

3 METHODS

At its core, our framework makes it possible to combine various types
of raw medical data into a searchable database, fully integrated with
an interactive data exploration environment. In cohort studies, imag-
ing and/or non-imaging data is usually available for multiple patients,
can originate from multiple modalities and might be available at mul-
tiple timepoints. Usually, this data is unordered and stored in different
locations. Our approach is to preprocess and store the imaging and
non-imaging data in a searchable database. The layout of this database
is designed in such a way that it enables the flexible application of vi-
sual exploration techniques. The visual exploration techniques visual-
ize the data with different representations and initiate dynamic search
queries based on the user’s interaction. Since all data dependencies
are stored in the database, this enables the user to interactively explore
relations in the data.

A carefully designed and implementable data structure is required
to integrate data processing and interactive visualization of multi-
modal and multi-timepoint data in one framework. Therefore we
propose the use of domains, features, mappers and studies (see Sec-
tion 3.1) which will organize the data such that imaging and non-
imaging data can be stored and explored. After importing this data,
careful pre-processing is usually required to prepare it for analysis.
Therefore we propose to use a visual preprocessing environment in
which the preprocessing pipelines are displayed as diagrams (see Sec-
tion 3.2). The preprocessing environment’s back-end takes care of the
data organization, storage in the database and feature extraction for the
available datasets. The data stored in the database can subsequently be
explored using various visual exploration techniques, which initiate
dynamic database queries and are discussed in Section 3.3).

3.1 Conceptual framework

The framework we propose is based on four concepts, including do-
mains, features, mappers as inspired by Blaas [4] as well as our newly
added concept of studies (see Fig. 1). In short, a domain defines the
structure of a space, features define the values on that space, mappers
define the relation between points on two domains and studies connect
features measured in the same patient and on the same day but orig-
inating from different domains. The following sections explain these
concepts in detail.

3.1.1 Domains

A domain defines the structure of a space on which features are de-
fined and can be measured. In medical imaging modalities such as
computed tomography (CT) and magnetic resonance imaging (MRI),

the domain is usually defined as a 3D spatial grid. In laboratory test-
ing however, test results are usually defined as a scalar value. For
example, the erythrocyte sedimentation rate (ESR) is defined on the
ESR domain: a domain spanning all valid ESR measurements. Other
domains include for example neuropsychological test results, or inter-
mediate representations in the analysis of medical imaging data, such
as histograms. The type and properties of a domain determine which
operations can be applied on its features. This means for example in
the case of 2D image processing algorithms, that they can be applied
on any other dataset where a 2D structure exist.

We distinguish normalized and non-normalized domains. Normal-
ized domains contain features that can be compared across patients,
whereas non-normalized domains can be used to derive normalized
domains from. A typical normalization procedure is defined by a com-
bination of mappers and aims to derive meaningful features that can be
compaired across patients. For example, raw MRI scans of individual
patients are considered to be non-normalized domains. The scans are
not registered and cannot be used to compare between patients. A typi-
cal normalization procedure would compute a normalized quantitative
parameter from the scan, or register the scans from different patients
to a shared spatial reference frame. These normalized features can
subsequently be used to compare between patients.

3.1.2 Features

Features define the actual values on a domain. Features can be mea-
sured (as in CT) or computed from other features using mappers. A
feature can also be seen as a function that maps a point in a domain to
one or multiple data values, depending on the structure of the domain.
In the case of a MRI scan for example, the signal intensities in the data
volume are regarded as being a feature. Here the feature takes the form
of a 3D dataset, since its domain defines that MRI scans consist of 3D
datasets. In the case of a laboratory test, the result of the test is re-
garded as a feature. In this case, the feature will often take the form of
a single value. Features might also include qualitative measures (e.g.
“positive” or “negative” test result). Our implementation framework
stores the data values of features accompanied with their patient IDs
and examination dates. This way, the components of a study can be
easily determined.

3.1.3 Mappers

A mapper defines the relation between features on different domains.
Mappers are for example used in for deriving normalized features from
non-normalized image data. For instance, an algorithm performing
a “brain extraction” from a T1-weighted MRI scan is regarded as a
mapper which maps the features from the domain “T1 scan” to a new
domain called “brain extracted T1 scan”. In other words, this mapper
extracts the brain from the loaded T1 scan and stores the results as
features on the domain “brain extracted T1 scan”.

Although mappers transfer features from one domain to another do-
main, they have the property of preserving dependencies and relation-
ships in the data. In this way, the user can always drill down from a
derived feature to the original data.

3.1.4 Studies

The goal of the “study” concept is to combine related features from
different domains and reflects the state of a patient at a certain moment.
A study consists of all features measured in a patient on a certain date
and is defined by a patient’s ID and an examination date. For instance,
a patient could have had a MRI examination and a laboratory test on
the same date. The resulting MRI scan (and its derived features) and
the laboratory test result are considered as part of the same study.

Conceptually, a study can also be interpreted as a point having n
features on n domains. The n dimensional point defines a state of
a patient in the n dimensional space of patient states. This space is
composed of the n domains currently included in the framework. The
point consisting of the reduced number of normalized dimensions can
be compared with other normalized patient states.
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Fig. 1. A schematic representation of the conceptual framework and data structure. Domains I and II are non-normalized domains. The relation
between domain I and II is given by mappers. Feature extraction is a process of mapping a domain to a normalized domain. A study is a point in
the space of n normalized domains, connected by its patient ID and examination date.

3.2 Image preprocessing

Current medical research evaluates imaging data commonly qualita-
tively or quantitatively. Especially in the field of neuroimaging, where
quantitative imaging techniques such as quantitativeMRI (qMRI) have
become available, data analysis is shifting more often to automated
quantitative analysis techniques. This type of analysis is usually per-
formed by applying a number of image processing algorithms on each
dataset and aims to obtain a meaningful set of normalized parame-
ters that are comparable between patients. These image processing
algorithms often include unsupervised command-line tools, such as
the FMRIB Software Library (FSL) [20]. The process of designing
a batch script is not always intuitive for researchers with a medical
background. Furthermore, the execution and optimization of a feature
extraction pipeline for multiple patients is an error-prone process.

Therefore we supply a graphical boxes-and-lines interface, called
PREPAP, in which a feature extraction pipeline can be visually de-
signed using mappers supporting existing image processing tools.
Since the mappers can be implemented as black boxes, the user does
not require any programming experience to extract the features. Fur-
thermore, this approach gives rise to several advantages:

• The diagram representation allows for intuitive design and cus-
tomization of feature extraction pipelines;

• Mappers can be implemented such that the use of different pro-
cessing libraries is supported;

• The diagram representation helps to ensure that all datasets are
processed consistently;

• The graph-based representation enables additional functionality
such as caching of intermediate results, scheduling and parallel
preprocessing.

3.3 Visual exploration

For the visual analysis of the cohort data, we have created a multi-
ple coordinated view interface, called VISPAP, where the views and
other interface elements have been implemented as dockable win-
dows. Fig. 2b shows the main interface with two docked views. The
views display (normalized) scalar data or visualize volumetric image
data and can be used in any number and combination. The represen-
tations are interconnected to support various interactive exploration
techniques. This section discusses both the visual representations and
interaction techniques.

3.3.1 Visual representations

We distinguish two types of visual representations. The first type con-
sist of plots in which (high-dimensional) feature data can be visual-
ized. The second type includes visualizations in which volume data
can be visualized. High-dimensional feature data is visualized using
scatter plots, parallel coordinates plots (PCPs) and time plots. Data
is loaded into these representations by dragging individual normalized
domains, from a list in the interface, onto the axes of the individual
representation.

The scatter plot representation visualizes the features on two do-
mains and can be colored by the features of a third domain. In our
application, each marker on a scatter plot represents a study (see
Fig. 3(a)). To visualize the relation between studies originating from
the same patient, markers originating from the same patient can be
connected. The advantage of a scatter plot is that relations between or
clusters within the features on two domains can be easily identified.
A disadvantage of a standard scatter plot is the occurrence of visual
clutter when visualizing a large number of feature points.

A common way to visualize high-dimensional data is by using a
parallel coordinates representation [16]. In this representation, the n-
dimensional feature space is visualized on a grid consisting of n paral-
lel lines, where each point in the feature space is represented by a line
intersecting the n parallel lines. Using this representation, the features
on an arbitrary number of domains can be visualized in one visual
representation. By altering the order of the axes, scaling and color-
ing, PCPs can be used to identify trends in high dimensional data. In
our application, a line in the PCP represents a study consisting of n
domains. This is illustrated in Fig. 3(c) and 3(d).

The behavior of a certain feature over time can be displayed using
a time plot. This plot displays the time course for a certain feature
in a patient. Inspired by the ARF-framework of Wang et al. [24], we
organize the longitudinal data in this plot by aligning the time courses
by date, by patient’s birth date or by first occurrence of the feature (see
Fig. 4). Each alignment has its own advantages. Alignment by date
visualizes when the feature was measured in the cohort, alignment
by patient’s birth visualizes the trend of a feature at a certain age and
alignment by first occurrence displays follow up of individual patients.

Finally, a 2D slicer and 3D renderer can be used to visualize volu-
metric image data, for example when the user drills down on a specific
marker in a scatter plot. These visualizations are particularly useful
during the inspection of source image data, and during checking the
functionality of the feature extraction pipeline.
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Fig. 2. PAPILIO’s user interface. Fig. (a) shows the PREPAP feature extraction environment. On the left a list containing the available mappers.
These are displayed as blocks in the feature extraction pipeline. On double-clicking a mapper, mapper parameters can be altered. Fig. (b) shows
the VISPAP visual exploration environment. On the left top, a list of available normalized domains is displayed. Studies are visualized in the
representations at the right, which can be colored using the coloring panel at the left bottom.

3.3.2 Interaction techniques

We provide a number of basic interaction techniques to allow users
to directly interact with the visualizations and interactively query the
data in the database. The current interaction methods include linked
selection, coloring, drilling down and statistical-aids.

Linked selection is an interactive method to explore high-
dimensional data [8]. The selection of studies in one representation,
will highlight the corresponding studies in other representations. This
way, the behavior of cluster of studies in one representation can be
visually explored in other representations.

Coloring can be used for different purposes. First, studies originat-
ing from the same patient can be colored with the same color. This
gives an impression of the behavior of features within a single patient.
Studies can also be colored by label. A ‘label’ is a qualitative feature,
for instance a diagnosis or the presence of a certain antibody in labo-
ratory testing. On coloring by label, groups of studies with a common
aspect are visualized. This way, the spread of a diagnosis or effect of
the presence of a certain parameter can be explored. Finally, studies
can be colored by a domain containing quantitative features. By map-
ping the feature values on a color scale, the effect of the change of a
certain parameter can be studied in the different plot representations.

We use drilling down in two ways. First, a user might want to se-
lect an interesting subset of the data to focus on. This can be done by
selecting this subset and removing the non-selected studies from the
representation(s). Second, drilling down can be used to verify the in-
tegrity of the source or preprocessed image data. If a scatter plot visu-
alizing image derived data for instance displays an outlier, the outlier
can be drilled down to. By right-clicking the outlier, all parent features
(including image data) can be directly accessed and visualized in the
2D slicer or 3D renderer.

Finally we provide the possibility to make use of basic statistical
analysis methods when coloring by label in the scatter plot. The global
distribution of the various groups can be visualized by displaying op-
tionally confidence-weighted principal component ellipses of the in-
dividual groups. As can be seen in Fig. 5 this helps to understand
the behaviour of a complete group of patients by visually aggregating
their data. Furthermore, the significance of the difference between the
individual groups can be easily computed.

4 IMPLEMENTATION FRAMEWORK

The conceptual framework has been implemented in a C++ software
system called PAPILIO. We used Trolltech’s Qt for the user interface.
The image processing and registration components make use of the
FMRIB Software Library (FSL), while plot components are based on
the QwtPlot library and visualization components are based on the Vi-
sualization Toolkit (VTK). We chose SQLite as the central database

management system because of its light weight and serverless opera-
tion.

The user interface (see Fig. 2) consists of two tabbed environments.
The first environment called PREPAP takes care of importing and pre-
processing the data. The second environment is called VISPAP and
provides an interface for visual exploration. RAW data can be im-
ported from various formats using the various LOADER modules pro-
vided in PREPAP. Supported formats include imaging data such as
DICOM, VTI and NIfTI, but also non-imaging database formats such
as CSV and the frequently used SPSS and Microsoft Access database
formats. Features can be derived from image data using PREPAP’s fea-
ture extraction diagram. These can be subsequently visually explored
using linked scatter plots, PCPs and time plots in VISPAP.

PREPAP provides a toolbar with import modules at the top and a
list with available mappers in the left panel. These mappers can be
dragged onto the feature extraction canvas, and subsequently linked
together by dragging lines between the in- and outputs. The current
implementation includes mappers using FSL and VTK image process-
ing algorithms, and has support for caching and distributed processing.

VISPAP provides a toolbar with the available representations at the
top, and provides a list of the normalized domains and a coloring panel
in the left panel. Representations are displayed in the right part of the
screen. Domains can be dragged onto the axes of the various repre-
sentations. This way, features can be easily loaded into the various
representations. The coloring panel can be used to devise a global
coloring mode or a coloring mode for individual representations.

5 INFORMAL CASE STUDY

We evaluated the usability of the framework by applying PAPILIO on
a cohort of patients suspected of neuropsychiatric systemic lupus ery-
thematosus (NPSLE), a rheumatic disease of the central nerve system
with very heterogeneous symptoms. The heterogeneity and amount
of available data (MRI, neuropsychologic test results and laboratory
test results), as well as related work from literature, indicated that vi-
sual analysis could be helpful to generate higher confidence hypothe-
ses than has been possible up to now. During the evaluation, we aimed
to establish whether visual analytics could corroborate earlier findings
and further whether it could help point out new hypotheses.

5.1 Neuropsychiatric SLE

Systemic lupus erythematosus (SLE) is an autoimmune disease char-
acterized by various symptoms and the presence of various antibod-
ies [9]. SLE is diagnosed based on complaints, symptoms and/or ab-
normal laboratory test results. Since symptoms are different for each
patient, the American College of Rheumatology (ACR) defined 11 cri-
teria to differentiate SLE patients in research [22]. Criteria are for ex-
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Fig. 3. Visual analysis of image data. Fig. (a) and (b) show whole MTR
peak height versus location. Fig. (a) is colored by patient, and shows
an outlier with a high peak location. The outlier is removed in (b), where
the studies are colored by diagnosis (red: primary SLE; green: SLE;
and blue: control) and shows a PCA ellipse for each group. Fig. (c) and
(d) show various MTR parameters colored by MMSE (Blue to yellow
color scale, respectively 〈15,30〉 and 〈27,30〉). Fig. (c) does not show a
clear separation for the selected MMSE scores lower than 25. Narrow-
ing the color scale in (d) shows a separation in especially peak height
measures. Fig. (e) and (f) suggest that increase in whole brain MTR
peak height might be related to an increase in MMSE in an individual
patient.

ample the typical malar rash, discoid rash, hypersensitivity to sunlight,
pericarditis, glomerulonefritis or the presence of certain antibodies. A
patient has to fulfil four or more of the criteria to be classified as SLE
patient in research. In practice, these criteria are also used to diagnose
SLE in the clinic.

One of the ACR-criteria for SLE denotes “neuropsychiatric dis-
orders”. A large number of the SLE patients develop neurologic,
psychiatric or cognitive symptoms during the course of the dis-
ease. Neuropsychiatric manifestations of systemic lupus erythemato-
sus (NPSLE) vary from mild to severe and often are difficult to diag-

(a)

(b)

(c)

Fig. 4. Alignment of studies by (a) study date, (b) date of birth, and (c)
first occurence.

nose and distinguish from those of other diseases. Each part of the
nervous system could be affected, which may cause symptoms rang-
ing from cognitive dysfunction to seizures and strokes. Although the
underlying pathophysiology of NPSLE is unknown, current literature
suggests the involvement of different pathomechanisms including vas-
culitis, antibody mediated activation of the coagulation system and an-
tineuronal antibody mediated immune responses [15]. NPSLE is diag-
nosed per exclusionem and the incidence ranges from 14% to 80% [6].
This large extent is caused by the method of measurement in different
studies, difficulty of diagnosis and variety of symptoms. In order to
help clinicians and researchers define NPSLE more clearly, the ACR
also developed standardized case definitions for NPSLE [1]. This clas-
sification system not only describes diagnostic criteria, but also exclu-
sion criteria.

The diagnosis of NPSLE often is a dilemma. Symptoms are non-
specific and diverse, furthermore a reliable diagnostic test is lacking.
It is often unclear whether and how NPSLE patients should be treated.
Some researchers believe that a difference between SLE and NPSLE
does not even exists, but that some patients are simply more sensi-
tive for the neuropsychiatric symptoms. Results of preliminary stud-
ies show that imaging techniques, in particular MRI, can be used to
visualize brain damage. For example, magnetization transfer imag-
ing (MTI) can help making a diagnosis of NPSLE in individual pa-
tients [10], and also demonstrated the ability to quantify the amount
of brain damage [11]. Quantitative analysis also showed that invisible
damage exists beside visible lesions. The pathophysiology of both is
however unknown. Further research classifying and quantifying brain
damage is crucial for improving diagnosis and treatment of NPSLE.
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Fig. 5. Principal component ellipses of three groups visualized in the
scatter plot. The red ellipse in scatter plot (a) suggests a very large
space spanned by the red colored studies. The red group consists how-
ever of only three studies. In scatter plot (b) confidence visualization is
enabled, which weights the opacities of the ellipses by the number of
studies in each group.

5.2 Materials

This evaluation of the framework is based on one of the worlds largest
cohorts of NPSLE patients. The Leiden University Medical Center
(LUMC) started recruiting this population in 1996 and documented
all patients thoroughly. The cohort contains a large collection of 1.5T
MRI data without a standardized protocol. As of 2004, patients were
scanned on a 3T MRI with a standardized protocol, including a T1
and MTI sequence. This cohort, consisting of 154 patients suspected
of having NPSLE, was used to evaluate PAPILIO.

Neuropsychological test results were available for a large subset of
the patients. The neuropsychological tests were acquired using a stan-
dardized protocol, and included among others the hospital anxiety de-
pression scales (HADS), the mini-mental state examination (MMSE),
the Wechsler Memory Scale (WMS) and the trailmaking test (TMT).
The tests were acquired on the day of the MRI examination, scores
were normalized for age and level of education, and subsequently dig-
itized by the department of neuropsychiatry.

Laboratory test results are at least available for all patients on the
day of the MRI examination. For a subset of patients treated in the
LUMC itself, all laboratory test results of the past 10 years were avail-
able. The laboratory testing protocol was not standardized, but in-
cluded clinically relevant disease markers such as erythrocyte sedi-
mentation rate (ESR), C-reactive protein (CRP), anti-dsDNA and an-
tiphospholipid (APL) antibodies in subsets of patients.

5.3 Data import and image preprocessing

The computation of meaningful MTI parameters requires a magne-
tization transfer images and anatomical, T1-weighted, scans. Here
the MTI scans are used to compute magnetization transfer ratio’s
(MTRs), which provide quantitative information about tissue integrity.
In healthy individuals, MTR histograms of the brain are characterized
by the presence of a single, sharp peak, indicating that the brain is
homogeneous in terms of MTR characteristics. MTR histograms are
usually generated subvolumes of the brain, such as the whole brain or
only gray matter. Subvolumes are obtained by segmenting the anatom-
ical scan. To make the MTI and T1 scans available in PAPILIO, the
available image data was imported from DICOM and NIfTI format.
This resulted in 184 T1 examinations in 154 patients, and 160 MTI
examinations in 134 patients. In total, 151 studies included both a T1
and MTI scan.

The neuropsychological test results were imported from SPSS. Sub-
sequently, all laboratory test results of patients with imaging data were
retrieved from the hospital information system. This resulted in a sam-
ple of over 75,000 records, of which the subset of interest was im-
ported. Laboratory test results concerning the presence of antibodies
were only available as qualitative measures and were imported as la-
bels. Finally, the clinical diagnosis was available for 176 studies (148

patients). The diagnoses were divided in five main groups: including
active primary NPSLE, residual primary SLE, secondary NPSLE and
other diseases. Together with 20 controls, the diagnoses were imported
in PAPILIO.

The MTR parameters were derived from the image data using the
automatic preprocessing environment provided in PAPILIO. Based
on an existing FSL script, a feature extraction diagram was designed
which derived MTR features for whole brain, gray matter and white
matter from T1 and MTI images. The features included segmenta-
tion volume (i.e. whole brain, gray matter and white matter brain vol-
ume), mean MTR value, MTR standard deviation, MTR peak height
and MTR peak position. The preprocessing procedure derived these
features for all 151 studies which had the complete source data avail-
able.

5.4 Visual analysis of image data

Initially we were interested in a quick assessment on whether the MTR
parameters had been computed correctly. Therefore we opened a new
scatter plot and dragged the domains whole brain MTR peak height
and MTR peak position to the axes. Although the results seemed to
be in the same range, an outlier could be identified of which the peak
location was unusually high. By drilling down and visualizing the
source MTI data in a 2D slicer, it was identified that the source data
contained an acquisition artifact. Due to the acquisition artifact we
removed this scan from further analysis by marking it as invalid (see
Fig. 3(a)).

Previous research showed that patients with SLE and NPSLE have
a lower MTR peak height than controls [11]. To investigate whether
this could be supported by visual analysis of the current dataset, we
colored the studies on the existing scatter plot by diagnosis and en-
abled the visualization principal component ellipses (see Fig. 3(b)).
This representation indeed revealed a lower average peak height in pa-
tients with SLE and NPSLE compared to controls and corraborated
this earlier finding.

MTR peak height has also been associated with cognitive dysfunc-
tion [11]. To investigate whether visual exploration supported this
finding, we explored the relation between MTR parameters and the
mini-mental state examination (MMSE) result1. Therefore we opened
a new PCP and added the domains MTR mean value and MTR peak
height for whole brain, gray matter and white matter to the plot. The
studies in the PCP were colored by MMSE score. The studies having
abnormal MMSE scores were selected by using a linked scatter plot.
We expected this to highlight low MTR means and peak values in the
PCP, but this was not observed (see Fig. 3(c)). Narrowing the color
scale to normal MMSE scores (27 to 30) did reveal however a de-
crease in MMSE for reduced whole brain and gray matter MTR peak
height (see Fig. 3(d)). This suggestion was confirmed using a scat-
ter plot representation in which whole brain peak height was plotted
against gray matter MTR peak height and the studies were colored by
MMSE. Since the MMSE scores were corrected for age and education
level, the observation in this small range can still be considered as of
interest.

Another observation was done purely by coincidence. We used a
simple plot to visualize whole brain MTR peak height and aligned the
studies by first occurrence (see Fig. 3(e)). This representation clearly
separates the patients with MTR followup from the ones without. By
adding a new scatter plot displaying MMSE versus MTR peak height,
and connecting the studies originating from the same patients, the
change of MMSE and MTR peak height is displayed over time (see
Fig. 3(f)). It was surprising that the trajectories of the two patients
with follow up, almost have the same slope. From this plot, and by
highlighting the corresponding studies in the time plot, it could be ob-
served that in these two patients an increase in MTR peak height was
accompanied by improved cognitive function, and vice versa.

1The mini-mental state examination is a neuropsychological test which in-

vestigates global cognitive function. MMSE scores range between 0 and 30,

with values of 25 and above considered normal.



(a) (b)

Fig. 6. Two scatter plots showing MMSE, WMS mq, MTR peak height
and MTR peak location for all patients which have been tested on an-
tiphospholipid antibodies. The selection shows the subset of patients
with at least one antiphospholipid antibody present. The studies are
colored by diagnosis: primary NPSLE (cyan), secondary NPSLE (blue),
residual NPSLE (yellow), SLE (green) and other disease (red).

5.5 Exploring the role of antiphospholipid antibodies

Lupus anticoagulant (LAC), IgG anticardiolipin (IgG aCL) and IgM
anticardiolipin (IgM aCL) are antiphospholipid antibodies. These an-
tibodies are known to cause blood clotting problems, are often present
in patients with NPSLE and are considered as a potential cause of neu-
ropsychiatric symptoms since they might induce blood clotting prob-
lems in the brain on microscopic level. Furthermore, the presence
of antiphospholipid antibodies is associated with cognitive dysfunc-
tion [7, 21].

Since MTR peak height is associated with cognitive dysfunction, it
was interesting to investigate whether MTR peak height, MMSE score
and the presence of antiphospholipid antibodies show any relationship.
In conventional medical research, this would have been challenging to
investigate since the data originated from three sources. By loading the
APL antibodies from the hospital information system into our frame-
work however, PAPILIO’s data structure took care of the organization
of the data which facilitated the investigation of the triumvirate.

We started the investigation by opening two scatter plots. In the first
scatter plot, the domains MMSE and WMS mq2 were loaded. In the
linked second scatter plot, the domains whole brain peak height and
peak location were loaded. The studies in both scatter plots were col-
ored by disease (see Fig. 6). Subsequently, a linked PCP was opened
in which the three antiphospholipid antibodies were loaded. Using the
PCP, all studies having at least one of the three APL antibodies pos-
itive were highlighted in both scatter plots. Unfortunately, no clear
relation could be found in one of the scatter plots. Remarkably, what
was found, was that all SLE and NPSLE patients in the cohort with
abnormal cognitive dysfunction (MMSE < 25) had antiphospholipid
antibodies present.

We also analyzed MTR peak height, MMSE and WMS mq and the
presence of antiphospholipid antibodies in a more general way. Dur-
ing this analysis, we loaded the neuropsychological tests and MTR
parameters into scatter plots and colored them independent of the di-
agnosis by the presence of individual antiphospholipid antibodies. By
making use of the integrated statistical hypothesis testing functional-
ity, it appeared that in particular patients with positive LAC suffer from
cognitive dysfunction and memory loss.

5.6 Discussion

Using PAPILIO, we demonstrated the usability of visual analysis tech-
niques on medical cohort data. Imaging and non-imaging data from
different modalities were included and analyzed longitudinally and
across patients. The framework proved to be particularly helpful in the

2The Wechsler Memory Scale is a neuropsychological test which investi-

gates memory function. The average WMS mean quotient is 100.

organization of the data, the automated analysis, the ease with which
the data can be shown and the ease with which queries can be done.

In the application to NPSLE, visual analysis was used to explore
MRI, neuropsychological and laboratory data. By drilling down we
were able to identify invalid data and showed that visual exploration
techniques can be applied to get quick insight into the data. Although
the visual analysis was performed by non medical specialist, we were
able to identify trends in the data which corroborate earlier findings.
The potential of our system as a hypothesis generating framework was
emphasized by the visual extraction of a number of interesting new re-
lations that warrant additional research. For instance, linkage between
a time-oriented representation and a scatter plot revealed that an in-
crease in MTR peak height might be related to clinical improvement
in cognitive function as measured by MMSE in an individual patient.
Furthermore, it was found that all patients in the cohort with abnormal
MMSE scores had APL antibodies present. Finally, a global analysis
on antiphopholipid antibodies revealed that patients with LAC might
suffer more often frommemory complaints than patients without LAC.
Were this hypothesis to be confirmed, NPSLE patients suffering from
memory problems might possibly be helped by just prescribing “rela-
tively simple” anticoagulation medication. It is important to note that
our framework has helped to point out a number of potentially inter-
esting relations, that need to be further investigated using traditional
research methods.

5.7 Limitations

The above evaluation was performed by a non medical specialist. Al-
though this person is knowledgable concerning neuropsychiatric SLE,
the observations should be reconsidered by medical professionals to
judge their interpretation. Furthermore, it should be noted that the di-
agnosis groups were devised by the same person. They should also be
reconsidered by an experienced medical professional to enhance the
validity of the results.

6 CONCLUSIONS AND FUTURE WORK

In this work, we have shown that visual exploration across patients
and multiple modalities could be a promising new approach in med-
ical research. The technique provides researchers the opportunity to
interactively gain new insights in their data, generate new hypotheses
and exploit the potential of increasing amounts of medical data better.
The combination of human analytical skills with computational tech-
niques showed to have the potential to extract valuable information
from medical data and might help medical researchers to focus their
efforts.

At the basis of our hypothesis generating framework in which multi-
variate, multi-modal and multi-timepoint data can be visually explored
across patients, is a carefully designed data structure consisting of do-
mains, features, mappers and studies. This data structure organizes
raw data such that it becomes suitable for further processing and vi-
sual exploration. The data structure is synchronized with a relational
database. After importing, preprocessing and storing the cohort data
into the database, we exploited the flexibility and speed of the database
to present the data in the visual exploration interface using different
representations and interaction methods.

We have evaluated the usability of our framework by applying it to
a cohort of patients suspected of having NPSLE. Preliminary research
indicated that visual explorations might be of use in this heteroge-
neous disease. By extracting features using the feature extraction dia-
gram and visually exploring MRI, neuropsychological and laboratory
data we were able to observe trends corroborating earlier findings. In
addition, We observed a number of relations that warrant additional
research. Although the value of our findings should be reconsidered
by medical professionals, we believe that the current framework rep-
resents a promising first step in the application of visual analytics to
medical cohort research.

In future versions, we plan to continue optimizing the various vi-
sual representations. For example, the performance of the scatter
plot could be improved by providing a continuous scatter plot [3]



and the PCP could be improved by using bi-directional frequency his-
tograms [2].

During the evaluation, we identified that computer-aided explo-
ration, by making use of dedicated data mining, statistical and pattern
recognition techniques, would further strengthen the visual analysis
process in the search for groups of features showing a similar behavior.
A small preliminary study using PRTools [23] in MATLAB confirmed
this, for example using a feature selection approach which selects the
most corresponding domains to a certain domain, and can be used to
suggest interesting feature combinations.

The evaluation also revealed the need for improved techniques to
deal with missing data. Future work should develop improved tech-
niques for detection and handling missing data. Here, considerable at-
tention should be given to communicating the presence of incomplete
data to the user, since data is often missing due to practical reasons (i.e.
the data is available, but not as offline file, et cetera). It has also been
identified that the current definition of a study should be made more
flexible for practical use. Currently, the time slot in which features
are combined to a study is only one day while certain measurements
might be valid for a longer period of time.

Privacy protection. An unwanted side-effect of PAPILIO’s approach
to combine data from various modalities is that researchers might rec-
ognize individual patients based on the data. We plan to address this
by integrating anonymization techniques into the framework. For in-
stance hashing techniques might be used to anonymize patient ID’s
(e.g. MD5 would compute a unique hash for each patient ID) and de-
facing techniques to guarantee that image data is unrecognizable. The
framework’s structured design makes integration of this type of tech-
niques relatively easy.

Finally, we will continue collaborating with medical researchers in
order to further refine the functionality in our framework, and, impor-
tantly, to evaluate and judge the relationships that we have discovered
in the cohort data up to now.
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