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Abstract

Multi-field datasets contain multiple parameters defined over the same spatio-temporal domain. In medicine, such

multi-field data is being used more often every day, and there is an urgent need for exploratory visualization

approaches that are able to deal effectively with the data-analysis. In this paper, we present a highly interactive,

coordinated view-based visualization approach that has been developed especially for dealing with multi-field

medical data. It can show any number of views of the physical domain and also of the abstract high-dimensional

feature space. The approach has been optimized for interactive use with very large datasets. It is based on intuitive

interaction techniques, and integrates analysis techniques from pattern classification to guide the exploration

process. We will give some details about the implementation, and we demonstrate the utility of our approach with

two real medical use cases.

1. Introduction

Multi-field datasets contain multiple variables defined over

the same physical domain. As this type of data is being used

more often every day in clinical research and practice, it

is becoming increasingly important to have techniques with

which multi-field data can be effectively explored and visu-

alized. Some examples of medical multi-field data are:

Multi-modality data PET-CT is a multi-modality type of

dataset that combines CT (computerized tomography)

with PET (Positron Emission Tomography) data. The CT

data supplies anatomical information as context, while the

PET yields functional data, for example on the precise lo-

cation of tumors and their metastases.

Registered data Different datasets can be registered in or-

der to extract more information from the combination.

This can be done for different modality datasets of the

same patient, datasets acquired at different time points or

datasets of different patients.

DTI Diffusion Tensor Data is inherently multi-field data in

that it contains at least one symmetric second-order tensor

per data point. In the basic single-tensor model, there are

six unique tensor elements per data point.

Data with derived features This is an important class of

multi-field medical data where extra features have been

calculated for each data point. For example, based on a

CT dataset, the gradient or curvature volumes can be cal-

culated. The purpose of these extra features is often to be

used in subsequent segmentation, quantification or visual-

ization steps.

Visualization and image processing techniques could be

used by clinicians to make effective use of multi-field data

for diagnosis, therapy planning and surgical guidance. How-

ever, before this stage can be reached with a particular type

of multi-field data and application, visualization and image

processing scientists have to develop and refine the neces-

sary techniques for routine clinical use. This is a challenging

task, as the necessary exploration of multi-field medical data

is complex and there is very little supporting infrastructure.

In fact, there is currently no unified visualization approach

that satisfactorily addresses this problem.

The approach that we present in this paper was devel-

oped for these scientists and has the main goal of facilitat-

ing the crucial exploratory stage of the clinical algorithm

development pipeline. Our approach facilitates numerous

often-occurring tasks during the exploration of multi-field

datasets, for example:

• Investigating combinations of features for finding spatial

separations of point sets in physical space (segmentation)

• Classification of feature point sets (pattern classification)

• Finding clusters, patterns, and relations in the data
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• Selective visualization based on feature value ranges

• Investigation of possible features and their suitability for

segmentation or as pattern classifiers

Our approach is based on the use of interactive dynamic

coordinated views. This is based on related work concerning

multiple coupled views and multi-field (non-medical) data.

Our solution is set apart by three major factors. Firstly, it

has been optimized for highly interactive use with specifi-

cally multi-field medical datasets. In contrast to problems in

information visualization, multi-field medical datasets might

have a smaller number of features or variables per data point,

but can be very large. The inherent physical component of

medical data, i.e. the fact that it is continuously defined

over a spatial domain, requires a different approach. Sec-

ondly, our approach supports arbitrary coordinated projec-

tions of the high-dimensional multi-field feature spaces. Ex-

isting solutions support selecting discrete axes or features

from feature space to act as the spanning vectors of two-

dimensional scatter plots. Through an intuitive interaction

technique, our framework supports arbitrary projections of

feature space. In other words, each axis of the resultant coor-

dinated scatterplot can represent a user-defined combination

of features. Finally, we have integrated a number of analysis

techniques that are commonly used in pattern recognition,

such as clustering and transformation algorithms, linear dis-

criminant analysis, and principal component analysis. These

techniques can be applied interactively to result in a more

effective exploration.

The rest of this article is structured as follows. We discuss

related work in Section 2, and in Section 3 our approach

is explained in detail. Section 4 gives design considerations

for implementation, and some performance figures. In Sec-

tion 5, two real medical applications are described, demon-

strating the exploration process. We present conclusions and

future directions in Section 6.

2. Related work

XmdvTool [War94] combines a number of techniques for

the visualization of multi-variate data. These techniques in-

clude scatter plots, glyphs, parallel coordinates, hierarchical

techniques, and importantly, linked N-dimensional brushing.

Linked brushing refers to the functionality that selections

made in any one view will be reflected in all other views

on the same data.

The Grand Tour [Asi85] is a method for automatically se-

lecting a continuous sequence of 2D projections of N-D data

that are asymptotically arbitrarily close to the set of all pos-

sible projections. Practically, this allows one to visualize a

high-dimensional dataset with a single animation consisting

of a sequence of 2D projections [BA86].

XGobi [SCB98], as well as its more modern successor

GGobi [SLBC03], also supports linking of views, various

types of scatterplots, 3D rotation views, parallel coordi-

nate views and linked brushing. It distinguishes itself from

XmdvTool in that it supports a number of extensions of the

Grand Tour method described above.

Where XmdvTool and the Gobi systems are applica-

tions, Orca is a pipeline-based programming framework

for building visualization applications for multi-variate data

[SRL∗00]. The framework supports multiple linked views,

linked brushing and Grand Tour like automated generation

of sequences of 2D views. The focus was more on the archi-

tecture and design of the programming framework, and not

so much on the application of the methods themselves.

WEAVE [GRW∗00] is to our knowledge the first pub-

lished work explicitly integrating linked 3D scientific visu-

alizations with multidimensional statistical representations.

All views are coordinated and the statistical representations

support linked brushing. The 3D visualizations do not sup-

port brushing or selection.

The SimVis software system [DGH03] builds on the ideas

presented in WEAVE in that it combines scientific visualiza-

tion views with information visualization views. It extends

this work by presenting a feature definition language (FDL)

that formalizes the subsets of data that can be selected by for

instance linked brushing.

WEAVE and SimVis depart from the multi-variate infor-

mation visualization tradition by integrating scientific visu-

alization views, in the form of volume visualizations. How-

ever, neither of these systems support linked brushing or

selection in the scientific visualization view. Also, whilst

Grand Tour-like techniques generate sequences of arbitrary

2D projections of N-D data, all other work discussed in this

section that support the interactive definition of 2D projec-

tions of N-D data do so only by the selection of two discrete

variables from the multi-variate data.

Our work continues in the tradition of WEAVE and

SimVis by combining scientific visualization (physical

space) and information visualization views, but makes the

following new contributions: it supports the interactive vi-

sual definition of arbitrary 2D projections of N-D datasets, it

also allows linked brushing and selection in the scientific vi-

sualization view and, importantly, it allows features selected

in information visualization to be directly visualized in the

physical view. In addition, we have integrated techniques

from pattern analysis that can be interactively applied to en-

hance the data exploration process.

3. Methods

Our approach employs dynamic multiple-linked-view tech-

niques in an environment where tight coupling enhances the

users perception and exploration of the data.

There are four main architectural components in our ap-

proach. Firstly the data-model presents a clear and straight-

forward manner of representing structured volumetric multi-

scalar data. Secondly the view component contains the
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visual components used for user interaction. Thirdly, a

coupling component describes the bindings between the

views. Finally, a processing component contains the data-

processing methods that provide high-level control.

3.1. The data model

While the medical data we are focusing on are mostly de-

fined on regular grids, our data model supports arbitrarily

positioned measurements. The basic element in our model is

a data point, which is the set of measurements that share a

location.

Each data point contains the physical coordinates at which

it was defined, and a feature-space part which represent the

measured or derived values. Each data point can be part of a

single selection set, which is identified by a numerical iden-

tifier.

Two feature types: measured and derived

There are two types of features in our data model. Firstly, the

values directly sampled on the physical domain are called

the measured features. Since the exploration process later

on uses each data point as a separate entity, there is no lo-

cality involved that relates for example the value of a point

to the value of its neighbors. However, in segmentation this

type of local information can be very helpful (see also Sec-

tion 5.1.2).

For this reason our data model adds derived features. The

values for these derived features are computed using locally

available measured features. Examples of these computa-

tions are gradient computation, denoising and morphologi-

cal operations.

The main advantage of introducing these derived features

alongside the original data is that any combination of derived

and measured features can be studied during exploration.

3.2. Views

The components in this part of the architecture present the

user with a direct visualization of the data, with which the

user interacts to explore the data. The user is presented mul-

tiple linked but independent views of the same data. Each of

the views shows either a physical-space or a feature-space

representation of the dataset.

The physical-space view is based on the actual physical

locations of the data points, so that neighboring points in

these views represent physical proximity. Usually this map-

ping is very straightforward, such as a slice view or another

form of projection.

The feature-space view complements this by showing

only the feature values, unrelated to their physical location.

Points close to each other in these spaces share the same

characteristics, but can be positioned anywhere in the phys-

ical volume.

3.2.1. High-dimensional projection of feature-space

points

Since feature spaces are often high-dimensional, a reduction

to lower dimensions is often needed for display. Any two-

dimensional display reduces the dimensionality of the fea-

ture points. We have chosen to let our feature space view

show a projection of the feature values. The high dimen-

sional points are projected onto a plane that can be arbitrarily

positioned in feature space.

These extra degrees of freedom over feature-selection

techniques allow the user to study any linear combination of

features as a separate feature. Figure 1 shows how an anti-

diagonally positioned plane is used to study the difference

between two feature values.

x

y
y = −x

Figure 1: A projection plane that maps (x,y) to x−y, which

can be used to study the difference between two feature val-

ues directly.

Compared to the feature-selection techniques that are

most often used, this provides a number of advantages:

1. The relation between several features can be studied at

the same time

2. Interactive manipulation of the projection plane provides

extra insight into the higher dimensional structure of the

feature space

3. Differences between features can be used in the same

way as the original features, merely by repositioning the

hyper-plane

Usually the interest lies in finding clusters, outliers or sep-

aration planes. For these measures a projection to one or two

dimensions often suffices. Once the data has been reduced to

two dimensions, we can employ a scatter plot, or we can use

histograms for one dimensional projections.

3.2.2. Main view components

While feature-space views provide information about the

similarity of points, it is of prime importance to be able

to locate these points in the physical space. Our approach

currently includes two physical-space view components and

two feature-space view components (see Figure 2).

The basic physical-space view is the slice-viewer. The

slicer shows 2D orthogonal planes in physical space, on

which the feature-space values are represented as colors or
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Histogram Scatterplot

Slice-Viewer Color Slice-Viewer

Figure 2: The four view components: histogram, scatterplot,

slice-viewer and pseudo-color slice-viewer.

grayscales. To map feature-space values to a color, a pro-

jection of the feature values is needed. This projection can

be as simple as selecting a single feature and using that as a

grey value, but it can also involve an arbitrary projection that

maps a set of features onto RGB colors.

The scatterplot component has some improvements over

the scatterplot normally used, in order to deal with the large

number of points visible at the same time, and the high

dimensionality of the data. Each data-point is rendered as

a single point. The scatterplot uses additive rendering to

give a good impression of the density where points overlap.

Where often in high-dimensional data-analysis the scatter-

plot is used to visualize only two selected features, we allow

arbitrary combinations of features to be visualized.

3.2.3. Dynamic axis manipulation

Since high-dimensional projections are difficult to control,

we have chosen to use a straightforward direct control mech-

anism. We describe the projection-plane as being spanned by

two (high dimensional) vectors in feature space. Instead of

modifying these vectors directly, we transform the two n-

dimensional vectors into n two-dimensional vectors, so that

each can be displayed and manipulated in the view’s coordi-

nate system.

This provides the user with a single two-dimensional vec-

tor for each feature (see Figure 3). These vectors are repre-

sented as visual axes in the scatterplot, and can be manipu-

lated dynamically through pointing and dragging.

Since each feature has its own manipulable axis, there is a

direct link between the movement of the axis and the values

of the points for that feature: The larger the value the more

the points will move around when the axis is moved. In this

way, it is easy to pick up a feature and see how the currently

visible points are distributed along this axis.

Figure 3: Two clusters of points separated by a single fea-

ture. The separation can be easily found by moving the axis

(red) corresponding to the separating feature. After moving

the axis (right), the separating clusters can be distinguished

3.2.4. Selection and filtering

While a view of all data points may give a good overview,

filtering is required to be able to focus on a specific subset.

For example, the removal of air in a medical data set may be

necessary to see all the details in the rest of the data.

To support making these selections, we currently use mul-

tiple rectangular brush areas, which can be used in physical

space as well as in feature space. In this way making a se-

lection of a region of interest works in exactly the same way

as marking all points with the same properties (such as air).

To filter out uninteresting points, any selection can be

hidden and consequently removed from further processing

steps. While a single selection set is often useful enough,

more advanced segmentation/exploration methods may re-

quire multiple selection sets to be active simultaneously.

For this purpose, we provide the possibility to mark and

store selections with colors. Consequently points in the

dataset can be divided into groups, each visible with a unique

color. Each point belongs to a single group. With our selec-

tion system the visibility of selected sets of points can also

be toggled, so that only the region of interest is visible and

clutter is reduced.

3.3. Coupling

While each of the view components presented in the pre-

vious section can by itself be used to explore the dataset,

the combination of multiple views is much more powerful.

For that reason, we have chosen to use multiple simultane-

ous viewing components, between which a strong coupling

is kept. Selections made in one viewport are immediately

propagated to other viewports, and also projections can be

linked between views. This section explains in more detail

how the views are coupled and how this enhances the data

exploration process.
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3.3.1. Tightly coupled views

Our approach maximizes the link between the visible views

in a highly interactive setting. The dynamic propagation of

selection sets and filters to the other views gives direct feed-

back of the links between the visible points. The use of color

coded, additively rendered, points adds to this experience,

since the different selection sets can be distinguished in any

view.

Since the brushing feedback is interactive, we can quickly

investigate whether a group of points visible in one projec-

tion is also a group in a different projection, by simply mak-

ing a selection in one view and by watching the resulting

changes in the other views.

Each view by itself presents a complete representation of

the active dataset. The filters introduced earlier are always

applied to all views at the same time, and all views share the

same colored selections. This helps to maintain a sense of

uniformity, especially when many viewing components are

active simultaneously.

3.3.2. Linking of projections

While the selection sets are always shared between all views,

some other properties can be explicitly linked between a

pair of views. For example, the histogram view can be di-

rectly linked to the axes of a scatterplot view, so that the his-

togram will use the projected values. To examine how well

two classes can be linearly separated by a one-dimensional

separator, we can set up a scatterplot showing both groups

of feature-points that we wish to separate and then link the

x-axis of the scatterplot to our histogram view. When linked,

the histogram view will show a 1D histogram of the pro-

jected points, keeping selection colors intact (see Figure 4).

This type of linking of projections is also applicable to

the color slice viewer. Since each physical point in the slice

viewer has a feature value, the same projection can be used

to produce color values. For a single axis link, the color slice

viewer will show the projected one dimensional features us-

ing a pre-set colormap. To use a higher dimensional projec-

tion, each axis can be linked to a color channel of the image.

Figure 4: A histogram linked to a scatterplot. The histogram

uses the Y coordinates of the projected points in the scatter-

plot as a source.

Changes in projection are, just as changes in the selec-

tions, directly propagated into the linked views. Hence, feed-

back from the other views can directly be used in the interac-

tion loop for finding a suitable projection that separates the

points in the desired manner.

3.4. Processing

While the direct manipulation of the scatterplot’s projections

is an effective to gain insight in high-dimensional spaces, it

is often a lot easier to use statistical analysis techniques in

order to find proper projections. This component contains

all methods that use calculation on the (selected) data to in-

fluence the way it is displayed by the visual components.

3.4.1. Using selections to create new projections

Exploring high dimensional feature spaces can be very dif-

ficult, even when direct links between feature and physical

space are used to put the data into context.

An often recurring task is finding a projection that best

shows a selected point set, or that best shows the differenti-

ating features between two sets of points. In the next sections

we discuss both situations, and how the processing methods

available in our system can assist in these tasks.

In the first case, the high dimensional feature space often

shows quite a bit of correlation, which can get in the way

of finding intricate details in our area of interest. In these

cases, manually finding the projection that keeps most of the

important information intact may be tedious and difficult.

Therefore we provide the user with an automated way of

finding these projections, by the use of principal component

analysis (PCA).

In the second case, where the interest lies in separating

two sets of points (air and tissue for example), we are often

able to make two selection sets typical for each ‘material’

by brushing in the slice viewer. Once a selection has been

made for each of the two materials, linear discriminant anal-

ysis (LDA) is applied to find the optimal separating plane

between the two sets. This plane will provide us with a sin-

gle axis for which the spread between the two groups of pro-

jected points is maximized.

In all cases the axes we find can be directly applied to

any view, and to keep a sense of coordination, we change

the current projection to the new projection in a smoothly

animated fashion.

For some situations brushing can be very tedious, espe-

cially when the clusters in feature space have non-linearly

separable shapes. Therefore a third processing method is

available in the form of k-nearest-neighbor (kNN) classifi-

cation. This processing method aims to expand the currently

painted selections to points that are similar, or nearby in fea-

ture space. It takes as input a partially marked set of points,

then for each unmarked point it finds the closest point in fea-

ture space and copies its selection ID.

This type of processing method is extremely valuable in a

paint-by-example setting. An initial set of selections is made

for a number of important tissue types, after which the kNN
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process expands the selection to the whole dataset, resulting

in a segmented volume.

4. System/Implementation

We have implemented the above methods in a prototype sys-

tem, while keeping in mind the following goals:

1. Clear visual presentation of all components

2. Interactive display and manipulation at high frame rates

3. Good scalability up to datasets that contain tens of mil-

lions of points

The prototype system has been implemented in C++ using

OpenGL for rendering, for maximum flexibility and speed.

4.1. Arbitrary number of views and components

The implemented system allows an arbitrary number of view

components to be active at the same time. Figure 5 shows

the layout of the screen during an exploration session. To

simplify the user interface we have chosen a regular gridded

layout. Each cell in the grid can contain a single viewing

component, such as slice-viewers or scatterplots.

ColorSliceViewer

Histogram

Scatterplot

ColorSliceViewer

Histogram

Scatterplot

SliceViewer

Scatterplot

SliceViewer

Figure 5: Top: The interface during a user session. Bottom:

The component grid, where red arrows indicate the coupling

between components.

The configuration of these components can be stored and

loaded for task-specific exploration scenarios. The coupling

between views can be modified at run-time, but a pre-set

combination of couplings is initially present. Most parts of

the user interface are stateless, so there is no hidden internal

state hindering the user experience.

4.2. GPU-efficient data structures

To achieve optimal interactivity, even when process-

ing datasets containing millions of points, efficient data-

structures are needed throughout the processing pipeline. To

exploit modern graphics hardware, our system uses GPU-

friendly data-structures. The feature points are stored on the

graphics card in vertex-buffers as well as in main memory.

Since the high-dimensional projections used throughout the

view components are all written as GPU shaders, almost no

communication is needed between GPU and CPU, which

usually forms a bottleneck in these kinds of applications.

This allows us to transform and draw over 80 million points

per second for 4D datasets on a 2GHz AMD64 system with

an ATI x1900 videoboard.
Number of features MPoints/sec. Frames/sec.

4 80.2 61.2

8 44.2 33.7

12 41.7 31.8

Table 1: Rendering performance for the scatterplot with 1.3

million feature-points for a varying number of features.

The state of the selection groups has to be kept synchro-

nized between the two storages, for which a simple but ef-

fective update mechanism was implemented. All changes are

propagated from the main memory to the vertex buffers in a

batch-wise fashion, updating as few points as possible for a

given optimal batch size.

5. Applications

To show the applicability of the exploration techniques we

have used the presented methods to perform a number of

often required explorations tasks on medical data.

5.1. Material classification in CT virtual colonoscopy

In virtual colonoscopy, an important processing step is to

find the surface of the colon wall, so that polyps can be

detected. To gain more contrast in differentiating the wall,

scans are made with a contrast liquid and extra CO2 gas is

added inside the colon. Even with these measures, segment-

ing the colon surface can be tricky because of partial volume

effects that occur on the boundary between tissue and air, or

tissue and contrast medium.

The following sections describe how our exploration

methods can be applied to this type of problem. The data

exploration in this case involves two basic steps. Firstly, we

describe the exploration process for finding a linear sepa-

ration by brushing. Secondly we show how the additional

derived features can be used to find a better segmentation.

We will start with a simple scalar CT dataset, which we

load into a 2×2 gridded user interface as shown in figure 6.

5.1.1. Separating tissue, air and contrast medium

Since the main interest lies in the colon wall, we build an ini-

tial segmentation that includes the three main materials. Us-

ing the brushing interface of the slice-viewer, we mark parts

of air, contrast medium and tissue, as seen in Figure 7(a).

Once the selection has been made, we want to expand this

selection to similar points. The histogram at this point shows
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Figure 6: The gridded 2×2 layout of the user interface with

the CT dataset loaded. From top left to bottom right: his-

togram, slice view, scatter plot, color slice view

(a) Initial Selection (b) Expanded Selection

Figure 7: A shows the initial selection created through

brushing in the slice-viewer. Red represents contrast liquid,

green represents gas and blue marks tissue. B shows a de-

tail of the expanded selection through application of the kNN

classification process, note that the boundary is not correctly

classified.

fairly well separated peaks, suggesting that a simple classi-

fication/separation can be found. By selecting the kNN clas-

sification process (see Section 3.4.1), each unmarked point

is assigned the selection ID of the closest marked point in

feature-space. The result of this processing step is a fully

marked dataset, as seen in Figure 7(b).

This initial segmentation however has misclassified the

boundary. The boundary between air and contrast medium

was wrongly classified as tissue. This is caused by the par-

tial volume effect, whereby the voxels on the boundary have

the same scalar value as surrounding tissue.

5.1.2. Introduction of derived features

Since direct classification of the voxels at the air-contrast

boundary is hampered by the partial volume effect, fur-

ther steps are taken to introduce derived features (see

Section 3.1). Derived features are computed based on

physical-space neighborhoods, so a local gradient or mini-

mum/maximum can at this point be added to the dataset.

Figure 8: Scatterplot showing the distribution of points in

LH-space. Horizontal axis is L, vertical is H.

Figure 9: Expanded selection through application of the

kNN classification process on the feature space that was ex-

panded with the derived LH feature.

We choose to add LH features [SVSG06]. The LH values

represent the local minima (L) and maxima (H) by follow-

ing the local gradient direction. In this way, the boundary

between air and contrast medium will be identified by an L

value corresponding to air, and an H value corresponding to

contrast medium.

By examining the scatterplot for the newly added features

(see Figure 8), we already see a number of clusters emerg-

ing. Exploring these interactively by brushing in the scat-

terplot and watching the slice-views change, we note that

(as expected) transitions between materials are presented by

clusters in LH-space.

To test how well our LH space helps us to separate the

materials, we start by brushing a new selection set which ex-

plicitly includes the boundary surface (Figure 9). We expand

the selection through kNN and note that the two extra dimen-

sions (L and H) in our feature space help to find a proper

segmentation, as shown in Figure 9. Note how the materi-

als are correctly classified and the colon surface is correctly

segmented; the boundary no longer poses a problem.

5.2. Functional MRI combined with structural MRI

A number of different scanning techniques are currently em-

ployed in brain imaging through MRI. The different tech-

niques provide different types of 3D volumes, and are often

used together. We will focus on neurosurgical planning for

the resection of brain tumors, where it is of prime importance

to prevent damage to the important functional areas. For this

purpose, multiple scans are made; First a structural MRI to

c© The Eurographics Association 2007.



Jorik Blaas, Charl P. Botha and Frits H. Post / Interactive visualization of multi-field medical data

provide a whole-brain scan as a reference image. Secondly,

multiple functional MRI scans map the activation areas for

the main motor tasks, such as hand and foot movement

For each of the motor tasks, the functional MRI scan is

preprocessed to provide a volume containing the Z values,

which describe the correlation of each voxel to the specific

task. In total, we have five measured features: one structural

MRI and four functional MRIs (for hand and foot motion on

each side).

5.2.1. Mapping the motor tasks

To find out the positioning of the location of the major acti-

vation areas, we used histogram brushing on the fMRI fea-

tures to threshold the Z values. In this way, each motor task

area is marked with a unique color. The sliceviewer can then

be used to inspect these areas as they are overlayed on the

structural MRI.

5.2.2. Adding a new derived feature: tumor distance

In planning the surgery, it is often important to use a safety

margin around the tumor and see if any functional activation

areas are within this range. For this, a semi-manual segmen-

tation of the tumor is made beforehand, which we can use

to introduce a new derived feature. We apply a distance field

processing step, generating a distance map for the tumor, in

which each voxel stores the minimum distance to the tumor.

This volume can consequently be added as a new derived

feature.

Using brushing and filtering on this distance feature, we

can now focus on the area inside the safety margin around

the tumor. Since filtering does not interfere with the selec-

tions assigned previously, the activation areas inside this area

can be directly studied.

6. Conclusions and future work

With this work, we have made the following contributions:

• We presented a dynamic coordinated view approach for

the interactive visualization of (medical) multi-field data.

• We showed how scatter plots can be created with arbitrary

projections of high-dimensional feature space.

• We demonstrated how techniques from pattern analysis

can be interactively applied to facilitate a visualization-

based multi-field exploration process.

• Using two case studies, we demonstrated the application

of our approach to real medical data.

The techniques we have described can be used for a wide va-

riety of tasks. Especially a quick evaluation of the relevance

of certain features for a given problem is extremely useful

in practice. Manual exploration of 2D feature-space projec-

tions is augmented by the PCA, LDA, and kNN analysis,

and in this way the user is guided quickly toward important

views of a high-dimensional feature space. Throughout, two

facilities are essential: the dynamic feedback displayed in

multiple views, and the direct axis manipulation. Of course

the system as it is now is only intended for users with a back-

ground in visual data analysis. For clinical use, a task- ori-

ented user interface layer is required, which will require a

major design effort.

There are many possible directions for future research.

The current system can be extended with more components

for analysis and viewing, such as volume rendering and par-

allel axis views. Also, more support for time-varying data

can be added, such as adding local change metrics as new

derived features.

For better support of the interaction and exploration pro-

cess, hierarchical selection techniques could be added. This

could be combined with a logging mechanism to document

the analysis process and facilitate backtracking.
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