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Abstract

For the visualisation of time-dependent data sets, inter-
active isosurface extraction and rendering is desirable.
It allows the user to study the development of a surface
shape in time, such as a moving front or an evolving ob-
ject shape. For this purpose, the user must be able to
interactively specify an isovalue, and a sequence of iso-
surfaces must be visualised, starting from any time step,
in forward or backward direction in time. In this pa-
per, we describe efficient and tightly coupled techniques
for time-dependent isosurface extraction and rendering
at interactive frame rates. In preprocessing, we create
data structures from a time-dependent data set that al-
low real-time extraction of all isovalue-spanning cells,
achieving rates of several hundreds of frames per second.
These isovalued cells are then passed to a fast hardware-
assisted direct point rendering algorithm for display, thus
avoiding time expensive surface construction by triangu-
lation. This algorithm makes effective use of the avail-
able graphics hardware.

CR Categories: 1.3.m [Computing Methodologies]:
Computer Graphics—Miscellaneous

Keywords: Visualisation, Isosurface extraction, Vol-
ume rendering, Time-varying data sets

1 Introduction

Interactive exploration of large, time-dependent data sets
is one of the greatest challenges in visualisation today.
This is especially true for areas such as flow visuali-
sation, where time-dependent simulations are becoming

common practice, and can produce high resolution grid
data sets with many thousands of time steps. In spite of
this, scientists investigatig these large data sets require
interactive visualisation techniques with which they can
browse through the data in both space and time.

When using a flexible, general-purpose visualisation
technique such as isosurface extraction for a time-
varying data set, it is desirable to interactively change the
isovalue, and watch the development of the surface shape
over time. However, extracting and rendering isosurfaces
separately for each time step is generally too slow for in-
teractive exploration.

Our approach to this challenge is to use specialised data
structures allowing very fast access and data retrieval for
answering a specific type of visualisation query, such as
in isosurface extraction. We used a number of criteria
in choosing such a data structure. First, it should do
fast isosurface extraction for any isovalue. Second, it
should be suitable for time-dependent data sets. Combin-
ing these two, it should be possible to do incremental sur-
face extraction, or to determine the differences between
successive time steps. Of course, it should be much
faster than straightforward isosurface extraction from ev-
ery time step. Finally, the results of the extraction should
be directly passed to a fast rendering algorithm for dis-

play.

We have employed a data structure for fast isosurface ex-
traction from time-dependent data sets [Shen 1998]. It
is specialised, because it does not allow for other types
of visualisation, but it is generic in the sense that any
isovalue can be extracted from any time step. To make
our system achieve interactive frame rates in browsing a
data set, we have directly linked the output of our iso-
surface extraction with a fast, hardware-supported direct
rendering algorithm [Botha and Post 2003], resulting in
interactive isosurface extraction and visualisation from
time-varying data sets. The direct rendering avoids the
time-consuming construction of polygonal surfaces us-
ing a Marching Cubes type of algorithm [Lorensen and
Cline 1987]. By combining these two methods, and cap-
italising on incremental surface extraction, the user can
specify an arbitrary isovalue and time step, and the devel-
opment of the isosurface can be dynamically visualised
in forward or backward time direction.



This paper is organised as follows. In Section 2, we
discuss related work in isosurface extraction techniques
from time-dependent data, and suitable rendering tech-
niques to display the isosurface. Then we will explain the
data structures we have used in Sections 3 and 4, and the
modified shell rendering algorithm in Section 5. Some
performance results are given in Section 6, and we will
reflect on the results and further work in Section 7.

2 Related work

Most data structures for fast isosurface extraction are
based on tree representations. Sutton and Hansen
introduced the Temporal Branch-on-Need Tree (T-
BON) [Sutton and Hansen 1999]. This is an extension to
the original Branch-on-Need Octree (BONO), described
by Wilhems and Van Gelder [Wilhelms and Gelder
1992]. The T-BON is a version for time-dependent data
sets, but it does not make use of temporal coherence. The
data structure is suitable for fast isosurface extraction.

Shen presents an algorithm for fast volume rendering of
time-varying data sets, using a new data structure, called
the Time-Space Partition (TSP) Tree [Shen et al. 1999].
This structure could also be adapted for fast isosurface
extraction. The TSP tree is capable of capturing both
spatial and temporal coherence in a time-dependent field.
Both the spatial and temporal domain are represented hi-
erarchically in the TSP tree: each node of the octree rep-
resenting space, contains a full bintree representing time.
Although this makes multi-resolution access possible for
any dimension, it also means a huge storage overhead.

Shen describes another data structure for isosurface ex-
traction from time-varying fields, called the Temporal
Hierarchical Index Tree [Shen 1998]. The idea behind
this structure is to store voxels that remain (more or less)
constant throughout a certain time span only once for that
entire time span. For our purposes, we decided to use and
extend the latter. We will describe this structure in more
detail in the following Sections.

We have made an implementation of this data structure
with optimisations for space efficiency. We have created
search routines for retrieving the isosurface-spanning
cells for any isovalue and from any time step, and spe-
cialised incremental search routines that allow an even
faster cell search from any time step, given the previous
results from another time step.

For visualisation we implemented two different point-
based rendering techniques. The first, ShellSplatting, is
a hardware-accelerated direct volume rendering method
that is based on a combination of splatting [West-
over 1989] and shell rendering [Udupa and Odhner
1993]. The second is a much faster, but lower quality,

point-based volume rendering method that was created
specifically for the isosurface extraction documented in
this paper. The points are displayed as opaque, flat-
shaded polygons that are parallel with the viewing plane.
This is an extreme simplification of systems like QS-
plat [Rusinkiewicz and Levoy 2000] and object space
EWA surface splatting [Ren et al. 2002].

Both rendering techniques have been tightly coupled
with the extraction technique. The cells that result from
the search routines are fed directly into the rendering al-
gorithm, without the need for retrieving the raw data or
having to perform interpolation or triangulation. This
high level of integration between extraction and render-
ing is an important advantage of our technique.

3 Data structures

Isosurface extraction involves selection of the voxels, or
cells, that are intersected by the isosurface, that is, those
cells that contain the isovalue. This means that those
cells must have some vertices with scalar values lower
and some with values higher than the isovalue. To check
if a cell is intersected by the isosurface, it is therefore
sufficient to store the extreme values of the cell. It is the
main idea for this and other data structures, that each cell
is stored as an interval [min;, max;], and to check if a cell
is an isosurface cell, we simply check if the isovalue is
contained in that interval.

The data structure we used consists of three elements: a
binary tree representing time, and the Span Space and In-
terval Tree data structures for making an efficient interval
search possible. We will discuss each of these structures
in the following Sections, before describing the Temporal
Hierarchical Index Tree in Section 4.

We will use the terms voxel and cell alternately through-
out this paper. Also, in this context, the term inferval
refers to the representation we use for cells or voxels.

3.1 Binary Time Tree

An important aspect of the Temporal Hierarchical Index
Tree (or THITree), is the use of temporal coherence of
cells. Instead of storing all the data set’s cells for each
time step, cells that remain more or less constant (that is,
within a certain tolerance) throughout a given time span,
are stored only once for that entire time span.

The basic structure of the THITree is a Binary Time Tree,
dividing the entire range of time steps of the data set re-
cursively into smaller and smaller ranges. The nodes at
one level of the binary tree represent a single time step of
the data set at a certain temporal resolution. The temporal
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Figure 1: An example of a Binary Time Tree for 10 time
steps.

resolution doubles with each level of the binary tree. See
for a simple example Figure 1. In each node of this binary
tree, the cells are stored that remain more or less constant
throughout the corresponding time interval. This means
that those cells need not be stored anywhere in the tree
below the current node. This is the main cause for the
possibly large data reduction that can be achieved using
this data structure.

The top node of the binary tree represents the entire range
of time steps of the data set. The leaf nodes of the tree
represent the single time steps at the highest temporal
resolution. To retrieve the isosurface cells for a certain
time step, the binary tree must be traversed from root to
leaf nodes. The cells that are found first, are cells that
remain more or less constant throughout the entire time
range. The cells that are found in the leaf nodes are those
that differ with respect to the neighbouring time steps.
Only when the tree has been traversed entirely from root
to leaf node, all isosurface cells have been found.

We still need a way to classify the variance of cells — we
need a way to define “more or less constant” — to deter-
mine where the cells should be stored in the Binary Time
Tree. Furthermore, we need a way to store a (possibly
large) number of cells in each binary tree node efficiently,
enabling a quick and efficient search for isosurface cells.
Both these problems will be addressed next, when we
discuss the Span Space.

3.2 Span Space

As stated above, cells are stored in the THITree as in-
tervals [min;, max;|, and isosurface cells are simply those
cells for which the interval contains the isovalue. The
Span Space, as described by Livnat et al. [Livnat et al.
1996], is used to represent intervals [min,, max;] as points
(min;, max;) in 2D. The x-coordinate of a point represents
the minimum value, or left extreme, of the interval, and
the y-coordinate of the point represents the maximum
value, or right extreme of the interval. See Figure 2a.

For a time-dependent data set, each cell corresponds to

multiple points in Span Space, one for each time step.
The amount of temporal variation of a cell can be quan-
tified by the amount of variation of the corresponding
points in Span Space. For this, it is useful to define a grid
in the Span Space, for example using a lattice subdivision
scheme [Shen et al. 1996] (see below). As a measure for
the temporal variation of a cell, we use the number of grid
elements that the correponding points in Span Space oc-
cupy. For example, if all points for a cell during a certain
time interval are located within 2 x 2 lattice elements, we
classify the cell as one of low temporal variation for that
interval, and therefore, the cell has to be stored only once
for that time interval, in the corresponding node of the
THITree. We use the parameter Max Variation for this; in
Sections 4.1 and 6 we will discuss the influence of this
parameter on the accuracy and size of the THITree.

The lattice subdivision scheme used, works as follows.
A sorted list is created of all distinct extreme values of
all cells from all time steps. From this list, L+ 1 scalar
values are found that divide the list into L equal length
sublists. These L+ 1 scalar values can then be used to
draw the L+ 1 vertical and horizontal lines in Span Space
to form the lattice.

The Span Space is not only used for quantifying the
amount of temporal variation of the cells, but also for
storing the cells in each node of the THITree. We store
one Span Space per node of the tree. Because non-leaf
nodes of the THITree represent time spans, instead of
single time steps, the cells that are stored in the Span
Spaces in these nodes have to be represented by their
temporal extremes: a single cell, changing over a num-
ber of time steps, corresponds to a number of points in
Span Space (one for each time step), but will always be
represented by a single point, representing the temporal
extreme values.

The points that are stored in Span Space are organised
per row of the Span Space. For each row, two lists
of points are maintained, one sorted on the minimum
value in ascending order, and one sorted on the maxi-
mum value in descending order. These lists do not con-
tain the points from the lattice element on the diagonal,
because this element requires a min-max search. Instead,
these points are stored in a separate data structure, an In-
terval Tree [Cignoni et al. 1997]. This structure will be
discussed in Section 3.3.

When the Span Space needs to be searched for isosurface
cells, first, the lattice element [/, 1] is located that contains
the isovalue V,, represented by the point (V,.,,V; ). See
Figure 2b.

1. For each Span Space Row R,R > I, we search the
list that was sorted according to the minimum val-
ues. We collect the cells from the beginning of the
list until the first cell is found with a minimum value
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Figure 2: a) Intervals represented as points in Span Space. b) The intervals spanning a given isovalue V;, are located in

the upper left corner from the point (V._ V.

iso’ "iso
steps, corresponding to three regions in Span Space.

greater than the isovalue. Because R > I, we know
that the maximum values are larger than the iso-
value, therefore, all cells found are guaranteed to
contain the isovalue.

2. For the Span Space Row I, we search the list that
was sorted according to the maximum values. We
collect the cells from the beginning of the list un-
til the first cell is found with a maximum value less
than the isovalue. Note that, because we have left
out the cells from the diagonal element, all cells in
this list have a minimum value less than the iso-
value, and therefore, all cells found are guaranteed
to contain the isovalue. This is the reason why the
cells from the diagonal element are stored in a sep-
arate data structure.

3. For the same Span Space Row I, we search this data
structure, the Interval Tree, to find the cells from the
lattice element [1,1].

In Figure 2c, these three cases are illustrated. The first
case corresponds to the light gray region. The second
case corresponds to the dark gray region, which is the
row containing the isovalue. The third case corresponds
to the lattice element on the diagonal, for which only the
striped part contains isosurface cells; the white parts have
either a too large minimum, or a too small maximum
value.

3.3 Interval Tree

The Interval Tree is a data structure that was proposed
by Edelsbrunner [Edelsbrunner 1980] to retrieve from a
set of intervals those that contain a certain query value. It
has an optimal efficiency of O(logn). We use the Interval
Tree to search for intervals (meaning cells) that span a
given isovalue [Cignoni et al. 1997].

An Interval Tree is created as follows. Given a set

). ¢) The search for intervals spanning a given isovalue V.

is0 18 done in three

I={1,,...,1,} of intervals [a,,b,], we create a sorted se-
quence of distinct extremes X = (x,,...,x,), that is, each
a; or b; is equal to some x It The Interval Tree consists of a
balanced binary tree, whose nodes correspond to values
of X, plus two lists of intervals appended to each non-
leaf node of the tree. In Figure 3 is a simple example of

a small Interval Tree.

The root of the tree is assigned the “halfway” value &, =
xm. The set [ is partitioned into three subsets:

2
o [,={I, €lI|b; < §}; the intervals that are entirely to

the left of &,;

e I, ={I, € Ila; > §,}; the intervals that are entirely
to the right of J,;

o Iy = {I, € Ila; < 8, < b;}; the intervals that contain
or overlap §,.

The intervals in / 5, are stored in the root node, arranged
into two lists: one containing all intervals sorted accord-
ing to their left extremes a;, in ascending order (AL), and
one containing all intervals sorted according to their right
extremes b;, in descending order (DR).

The left and right subtrees are defined recursively, by
considering the interval sets /; and /,, and the sequences

(Xq500x and (x , respectively.

ryp-a) 300 (g o)

When searching the tree for a given isovalue V, the tree
is traversed as follows, starting at the root:

e if V < 0, then list AL is scanned until an interval I;
is found such that a; > V; all scanned intervals are
returned and the left subtree is traversed recursively;

e if V > §, then list DR is scanned until an interval /; is
found such that b; < V; all scanned intervals are re-
turned and the right subtree is traversed recursively;

e if V = §, then list AL is returned.
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Figure 3: An example of a simple Interval Tree for a
small number of intervals.

4 THI Tree

We now have all the tools to construct the Temporal Hi-
erarchical Index Tree. We do all this in a preprocessing
step.

First we classify all cells according to their variance over
time, using the Span Space, in order to determine their lo-
cations in the Binary Time Tree. For each cell, an interval
is determined, which is represented as a single point in
Span Space. The variation over time is quantified by the
number of grid elements in Span Space that are occupied
by the points corresponding to that cell in each time step.
Cells with a low temporal variation over a long time span
are placed high up in the tree. Note that the time tree
structure is determined a priori, only by the number of
time steps. Therefore, the time intervals which are rep-
resented by each node of the tree, are fixed. Referring to
Figure 1, if a cell remains constant for the time interval
[0,5], for example, it will be stored in the two nodes [0, 3]
and [4, 5], because there is no node for the interval [0, 5].

Next, we store all cells for a certain node of the tree in
a single Span Space, arranging the cells per row of the
Span Space into two lists plus an Interval Tree. We use
the same Span Space, meaning the same lattice subdi-
vision, for every Span Space in the THITree. The list of
cells for a single Span Space is divided into sublists using
this lattice subdivision. Each sublist contains the cells for
one row of the Span Space. The cells that belong to the
lattice element on the diagonal, are stored in an Interval
Tree, and removed from the sublist. The remaining cells
are stored in two separate lists, the one sorted according
to ascending minimum value, the other according to de-
scending maximum value.

4.1 Isosurface cell query

The Temporal Hierarchical Index Tree can be queried for
any isovalue at any time step. First of all, we determine
the Span Space lattice element that contains the isovalue,
because all Span Spaces used in the THITree use the
same subdivision. Next, the tree is traversed from top
to bottom, selecting the correct nodes depending on the
requested time step. In each node of the tree, the corre-
sponding Span Space is searched, as described above in
Section 3.2. The cells returned by every search contribute
to the final result, which will be complete when the leaf
nodes of the THITree have been reached. The list of cells
we have obtained now contains all cells in the requested
time step that span the isovalue, and therefore, all cells
that are intersected by the isosurface. However, cells that
are found outside the leaf nodes of the THITree, are rep-
resented by their temporal extreme values, measured over
a certain time interval. The fact that these temporal ex-
treme values span the isovalue does not guarantee that the
extreme values for the current time step do so too. This
means that the resulting list of cells contains a number of
false positives.

The number of false positives can be controlled, but a
reduction of this number will be at the cost of memory
space. There are two parameters to control the accuracy
(and therefore the memory space) of the THITree. First,
the Span Space grid size can be adjusted (the parameter
L, we discussed in Section 3.2); smaller grid elements
result in fewer false positives. Next, another parame-
ter (Max Variation) defines which cells are considered as
“more or less constant” over time. This parameter corre-
sponds to the number of grid elements that a single cell,
varying over time, may occupy in Span Space, and still be
called constant. Stated otherwise, this parameter defines
the maximum allowed variation of a “constant” cell. In-
creasing this parameter obviously increases the number
of false positives, but reduces the memory size of the re-
sulting THITree. Depending on the setting of these two
parameters, the number of false positives ranges from
about 0.1% with the largest tree size, up to 5% with the
smallest tree size in our test application. Using the de-
fault settings, we get approximately 0.5% false positives.

4.2 Incremental search

The binary tree structure for representing time spans
makes it possible to do incremental searching for isosur-
face cells. Because each node in the tree represents a
certain time span, the information that is known in that
node can be used for all time steps in that span, that is,
for all child nodes of that node. For example, let us as-
sume that a search has been performed for time step 0,
and that the resulting isosurface cells are known. When



time step 1 is to be searched next, the tree does not need
to be searched fully. Instead, the previous result can be
used, because all the cells that have been found from the
root of the tree down to the node representing time span
[0,1], can be reused. These cells are identical for both
time step O and time step 1. Only the leaf node represent-
ing the single time step 1 must be searched. Next, when
time step 2 is to be searched, we need to do a little more
"back-tracking’, because the last common node for time
steps 1 and 2 is the node [0, 3].

This can be implemented fairly easily. The search in each
node of the tree returns a number of cells. These cells are
appended to a single result vector. For the incremental
search to work, we save the number of cells found so far,
that is, the size of the result vector, in a single vector of
integers. This vector is the only space overhead for the
incremental search — at most d integers, where d is the
maximum depth of the time tree.

For an incremental search of any time step #,, we pass
the result vector of the previous search, the integer vector
V[d] we just described, and the time step ¢, of the previ-
ous search. Note that these time steps do not have to be
consecutive; any two time steps can be used. The binary
tree is then traversed from the root to the leaf node repre-
senting #,. In each node N, (at depth i), we check whether
t, and 1, are in this node’s time span. If so, we simply go
to the next node, because we can reuse the first V[i] cells
from the result vector. If not, we truncate the result vec-
tor after V[i — 1] cells, because that is the number of cells
that #,, and 7, have in common. The rest of the tree must
be searched normally. During this search the result vec-
tor and the integer vector V have to be kept up-to-date.
While only causing a negligible space overhead, this in-
cremental search routine offers a performance gain of a
factor 3 in our test application, when we search 50 con-
secutive time steps incrementally, as opposed to 50 full
searches. In Table 1 the exact numbers are given (under
“Speed up”) for several different settings of the parame-
ters.

5 Point-based rendering

Making use of traditional triangulation and surface ren-
dering techniques for visualisation would almost negate
the advantages of the fast isosurface cell extraction. At
worst, it would entail that the original data would have to
be read from disc for all selected voxels and that surface
interpolation would have to be performed with for exam-
ple the Marching Cubes algorithm [Lorensen and Cline
1987].

For us the logical answer was to make use of a point-
based direct rendering technique. We further optimised

our ShellSplatting rendering algorithm [Botha and Post
2003], a combination of shell rendering and splatting, to
take advantage of the a priori knowledge that the voxels
we are dealing with are completely opaque and together
constitute an isosurface. ShellSplatting makes use of spe-
cial data structures that enable very fast implicit space
leaping and back-to-front or front-to-back traversal from
any viewing angle. This ordering is very important as the
technique makes use of Gaussian textured polygons that
are composited and scaled by graphics hardware.

The ShellSplatting technique yields high quality render-
ings of the extracted isosurfaces. However, due to the na-
ture of the data structures used, the voxels have to be or-
dered in at least the fastest-changing dimension and this
slows down the data conversion stage. We wished to pro-
vide a second, much higher speed rendering option.

By opting to use flat-shaded rectangular polygons instead
of Gaussian-textured ones, the ordering constraint could
be ignored. In return, the rendering quality would be
slightly lower. In this second method, the polygon that
is to be used for rendering the cells is calculated in the
same way as for ShellSplatting.

The polygon is constructed to be parallel to the view-
ing plane. This is correct for the orthogonal projec-
tion case. Strictly speaking, in the perspective projec-
tion case each rendered polygon should be orthogonal to
the viewing ray that intersects it. However, for efficiency
reasons, we make use of slightly larger screen-aligned
polygons [Kilthau and Moller 2001]. The polygon is
also constructed so that we can perform all rendering in
isotropic voxel space and have the graphics hardware per-
form necessary anisotropic scaling.

To visualise this construction, imagine a three-
dimensional ellipsoid bounding a small neighbourhood
around a voxel. If we were to project this ellipsoid onto
the projection plane and then “flatten” it, i.e. calculate
its orthogonally projected outline (an ellipse) on the pro-
jection plane, the projected outline would also bound the
projected voxel. A rectangle with principal axes identical
to those of the projected ellipse, transformed back to the
drawing space, is used as the rendering polygon.

Figure 4 illustrates a two-dimensional version of this pro-
cedure. In the Figure, however, we also show the trans-
formation from voxel space to world space. This ex-
tra transformation is performed so that rendering can be
done in the isotropically sampled voxel space, even if the
volume has been anisotropically sampled. Alternatively
stated, the anisotropic volume is warped to be isotropic.
The voxel-to-model, model-to-world, world-to-view and
projection matrices are concatenated in order to form a
single transformation matrix M with which we can move
between the projection and voxel spaces.
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Figure 4: Illustration of the calculation of the voxel
sphere in voxel space, transformation to world space
and projection space and the subsequent “flattening” and
transformation back to voxel space.

A quadric surface, of which an ellipsoid is an example,
can be represented in matrix form as follows:

PTQP=0

where
a d f g
d b e h
Q=17 e ¢ j
g h j k

contains the coefficients of the implicit function defining
the quadric and
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Such a surface can be transformed with a 4x4 homoge-
neous transformation matrix M as follows:

Q=mhH"om™! (1)

A voxel bounding sphere in quadric form Q is con-
structed in voxel space. Remember that this is identi-
cal to constructing a potentially non-spherical bounding
ellipsoid in world space. In this way anisotropically sam-
pled volumes are elegantly accommodated.

This sphere is transformed to projection space by mak-
ing use of Equation 1. The two-dimensional image of a
three-dimensional quadric of the form
A b
/_
ol

as seen from a normalised projective camera is a conic
C described by C = cA —bb” [Stenger et al. 2001]. In
projection space, C represents the two-dimensional pro-
jection of Q on the projection plane.

An eigendecomposition CX = XA can be written as

c=xhHrx"!

which is identical to Equation 1. The diagonal matrix A
is a representation of the conic C in the subspace spanned
by the first two eigenvectors in

R t
=l
where R and ¢ represent the rotation and translation sub-

matrices respectively. The conic’s principal axes are
collinear with these first two eigenvectors.

In other words, we have the orientation and length of the
projected ellipse’s principal axes which correspond to the
principal axes of a voxel bounding sphere that has been
projected from voxel space onto the projection plane. Fi-
nally, these axes are transformed back into voxel space
with M~! and used to construct the rectangles that will
be used to render the voxels.

The list of cells extracted from the THITree is uploaded
to the graphics pipeline in arbitrary order as a list of view
plane parallel polygons. Because all polygons are non-
textured and completely opaque, their ordering is not im-
portant. As explained above, scaling is done in hardware,
so anisotropic volumes are handled correctly.

Figure 5 shows a single time step of a sample data set ren-
dered with the ShellSplatter and the fast point-based ren-
derer. The ShellSplatted rendering on the left shows the
typical fuzziness often associated with splatting-based
rendering methods whilst the fast point-based rendering
on the right appears slightly jagged due to the use of flat-
shaded quads.

6 Results

We have used two data sets for testing the performance of
the THITree and the renderer. The first is a 963 data set
of an air bubble rising in water and breaking through the
surface !. This data set consists of 50 time steps (“bub-
ble”). The second data set is obtained from a fluid dy-
namics simulation, and contains turbulent vortex struc-
tures 2. The size of this data set is 64> x 100 time steps
(“vorticity™).

The extraction and rendering performance was measured
on a 2.4 GHz Pentium 4 with 1 GB of memory and a 128
MB GeForce 4 Ti4600 graphics card.

6.1 THITree size

The memory size of the Temporal Hierarchical Index
Tree for the 50 time steps of the bubble data set is about

IData courtesy S. P. van der Pijl of Delft University of Technology.
%Data courtesy D. Silver and X. Wang of Rutgers University.



Figure 5: Example renderings of a single time step. On the left the high quality ShellSplatting is shown, on the right the

faster simple point-based renderer output is shown.

132 Megabytes. The vorticity data set results in a tree
size of about 556 Megabytes. This huge difference has to
do with the variability of the data and can be illustrated
by examining the number of cells in each of the nodes of
the tree.

There are two parameters that influence the size of the
data structure, and thereby of course, also performance
and accuracy.

First, the size of the Span Space can be changed, that is,
the number of rows or columns in the Span Space. This
affects the number of cells in each row, the number of
Interval Trees in the Span Space (one for each row), and
the number of cells that has to be stored in each Interval
Tree.

However, the total number of cells in the Span Space
is not affected, therefore, the memory size of the Span
Space will hardly change. Only the vector represent-
ing the Span Space boundaries is affected by this pa-
rameter, but this vector is stored only once for the entire
THITree. But if the Span Space contains fewer grid el-
ements, meaning that the grid elements are larger, then
cells will sooner be considered constant for a longer time
span, and therefore these cells will be stored higher up
in the THITree, thus reducing the overall size of the data
structure. The downside is that more false positives will
be found. Accuracy is traded off for memory size.

The same applies to the MaxVariation parameter, which
indicates how many grid elements cells may span, and
still be considered constant. Thus, without changing the
size of each Span Space, we can control the level at which
the cells will be stored in the THITree. This way we are
able to reduce the total memory size of the tree, but at the
cost of increasing the number of false positives that will
be found.

In Table 1 a few performance characteristics of the Tem-
poral Hierarchical Index Tree are shown. We have used
the bubble data set (see Figure 6) for determining the in-
fluence of the two parameters discussed above. We cre-
ated THITrees with 3 variants of each of the two param-
eters: for the Span Space size, we used values of 32, 64
and 128, and for the MaxVariation we used 1, 2 and 3
grid elements.

Cells in our data structure are represented by a cell id,
a minimum and maximum value, and a gradient. We
compared the size of the THITree to the raw data size,
meaning simply the number of time steps x the number
of cells x the memory size of one cell.

Hﬂ' e

Figure 6: A single time step from the bubble data set.
The GUI contains sliders for interactively changing the
isovalue and the current time step.



Bubble data set, size: 96> x 50 time steps

Raw size of cell data: 981 MB

SpanSpaceSize 32 64 128 64 64 64
Max Variation 2 2 2 1 2 3
THITree size (MB) | 89.2 132.6 1934 | 3553 1326 96.7
% of raw data 9.1% 13.5% 19.7% | 36.2% 13.5% 9.9%
Search (ms) 8.2 8.4 9.0 9.0 8.4 8.1
Searchlncr (ms) 2.0 2.5 29 2.7 2.5 2.1
Speed up 4.1 34 3.1 3.3 34 3.9

Table 1: Time and space performance of the THITree for different values of the parameters SpanSpaceSize and Max-

Variation.

Rendering mode | Bubble Vorticity
High quality 11.1 20.4
Fast 67.4 135.7

Table 2: Average rendering frame rates (in FPS) for the
two data sets, both in high quality and in fast rendering
mode, for 512 x 512 images.

6.2 Surface cell extraction

The THITree data structure provides a very quick way to
search for isosurface cells. In our bubble data set the time
for extraction of the isosurface cells for a single time step
takes on average approximately 8.4 milliseconds. When
we use the incremental search algorithm we can achieve
even higher rates: incrementally searching the isosurface
cells in 50 consecutive time steps costs about 126 mil-
liseconds. This corresponds to 395 frames per second, or
2.5 milliseconds per frame. In the vorticity data set the
average rate of extraction for the 100 time steps is 1186
frames per second.

Referring to Table 1, the row “Search (ms)” displays the
average extraction time (in milliseconds) of the isosur-
face cells from a single time step. The next row shows
the same, but with the use of our incremental search rou-
tine. The last row shows the speed-up of the incremental
search, compared to the normal search. In comparison,
the average isosurface extraction time for a single time
step, using the VTK implementation of Marching Cubes
is about 134 milliseconds. This number can be compared
to the 8.4 milliseconds for our normal search, or the 2.5
milliseconds for our incremental search.

6.3 Rendering performance

We tested the two renderers, both the high quality Shell-
Splatter and the lower quality fast point-based renderer,
with the two data sets. The average frame rates for the
total pipeline of extraction and rendering (of 512 x 512
images) are shown in Table 2.

Compared to the extraction times, the rendering is the
processing bottleneck. The numbers in this Table are
rates for combined extraction and rendering, but 80% to
98% of the time is used in the rendering step, depend-
ing on the type of renderer used. For the rendering, the
number of isosurface cells is the most important factor.
The average number of isosurface cells extracted from
the bubble data set for the chosen isovalue is 16291; for
the vorticity data set, the number of isosurface cells is on
average 7617 per time step.

7 Conclusions and future work

We have described techniques for fast isourface extrac-
tion and direct rendering from time-varying data sets. In
a preprocessing step, data structures are generated that
allow us to retrieve the isovalue-spanning cells at any
time step and for any isovalue with high frame rates. In-
cremental searching uses temporal coherence to further
speed up the extraction process. The extracted cells are
rendered directly with a fast point-based rendering tech-
nique, displaying a shaded quadrangle at each pixel at
high frame rates. No visibility ordering is needed in this
case, so the overall speed is not reduced by an intermedi-
ate data conversion step. A high quality rendering tech-
nique based on ShellSplatting does require visibility or-
dering, but can still achieve interactive frame rates for
a 963 data set. In an interactive environment, the fast
rendering can be used during interaction, while the high
quality technique can be automatically invoked when the
input queue is empty. We will integrate this in our VR
data exploration system.

With this work, our main contributions are the fast incre-
mental search and the integration of the fast isospanning-
cell extraction and rendering stages. We have also at-
tempted to further optimise the search data structures for
space efficiency. Even more improvement is possible by
using compression techniques, as recently proposed by
Bordoloi and Shen [Bordoloi and Shen 2003].



However, in order for our technique to be truly scalable to
very large data sets, out-of-core functionality is required.
We are currently working on an out-of-core version of the
THITree in which a limited number of time steps remain
in memory, and new time steps are loaded on demand.
This completely overcomes the huge memory require-
ments and makes it possible to visualise very large trees
also on systems with only a small amount of memory.

There are two possible sources of error in the display
of the isosurfaces that must be investigated further. Al-
though this did not show up in the test images, the render-
ing of false positive cells may cause artifacts. Also, the
surface normals are stored only once over a time interval
that is considered “more or less constant”. This also did
not have any noticeable effect in the images, but we will
analyse the extent of the errors caused.
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